EFFECT OF ACID-BASE CATALYSIS ON HYDROTHERMAL CARBON COMPOSITION AND STRUCTURE OF FRUITWOOD BRANCHES
Liu Yaoxin1, Wang Yuan2, Pan Yihui2, Bo Ling3, Wen Bo1
Author information+
1. School of Energy and Power, Shenyang Institute of Engineering, Shenyang 110136, China; 2. Graduate Department, Shenyang Institute of Engineering, Shenyang 110136, China; 3. School Newspaper Editorial Board, Shenyang Engineering College, Shenyang 110136, China
Hydrothermal carbon was prepared by hydrothermal carbonization using fruitwood branches as raw material and citric acid and KOH as catalysts to investigate the effect of acid and alkali catalysis on the composition and structure of fruitwood branches hydrothermal carbon. The results show that hydrothermal carbonization can improve the fuel quality of biomass, the addition of citric acid can increase the degree of carbonization and the calorific value of the hydrothermal carbon from 18.06 MJ/kg to 22.23 MJ/kg, while the addition of KOH increases the ash content and decreases the calorific value of the hydrothermal carbon; the hydrothermal carbon has a predominantly mesoporous structure and many char particles are formed on the surface. The addition of citric acid promotes the formation of carbon particles, while KOH has the opposite effect; the increase in reaction temperature and the addition of catalyst increases the specific surface area of the hydrothermal carbon from 3.63 m2/g to a range of 496.37-582.40 m2/g;the formation of micropore is promoted by low concentrations of citric acid and KOH; and the arylation of hydrothermal carbon can be promoted by both high temperature and high concentration of citric acid and KOH; the addition of citric acid is able to increase the degree of graphitization of the hydrothermal charcoal, and the addition of KOH deepens the degree of am
Liu Yaoxin, Wang Yuan, Pan Yihui, Bo Ling, Wen Bo.
EFFECT OF ACID-BASE CATALYSIS ON HYDROTHERMAL CARBON COMPOSITION AND STRUCTURE OF FRUITWOOD BRANCHES[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 18-24 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1586
中图分类号:
TK16
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 宁艳春, 杨雨富, 伊凤, 等. 生物质能是我国能源结构转型的重要途径[J]. 化学工业, 2022, 40(2): 33-35. NING Y C, YANG Y F, YI F, et al.Biomass energy, an essential route for China’s energy structure transformation[J]. Chemical industry, 2022, 40(2): 33-35. [2] 舒斌, 曹格妮, 祁香宁, 等. 果树修剪枝条资源化利用途径研究进展[J]. 中国果菜, 2023, 43(3): 75-79. SHU B, CAO G N, QI X N, et al.Research progress on resource utilization of pruned branches[J]. China fruit & vegetable, 2023, 43(3): 75-79. [3] 李翊宁, 陈文强, 马杰, 等. 果树修剪枝条共混成型颗粒燃料燃烧性能与动力学分析[J]. 农业工程, 2022, 12(9): 63-67. LI Y N, CHEN W Q, MA J, et al.Combustion performance and kinetic analysis of co-densified pellet fuel produced from pruned fruit tree branches[J]. Agricultural engineering, 2022, 12(9): 63-67. [4] MENDECKA B, DI ILIO G, LOMBARDI L.Thermo-fluid dynamic and kinetic modeling of hydrothermal carbonization of olive pomace in a batch reactor[J]. Energies, 2020, 13(16): 4142. [5] 刘云云, 曹运齐, 余强, 等. 园林废弃物水热炭燃料特性研究[J]. 太阳能学报, 2022, 43(7): 439-444. LIU Y Y, CAO Y Q, YU Q, et al.Research on fuel properties of garden waste hydrochars[J]. Acta energiae solaris sinica, 2022, 43(7): 439-444. [6] ZHAN L, JIANG L, ZHANG Y L, et al.Reduction, detoxification and recycling of solid waste by hydrothermal technology: a review[J]. Chemical engineering journal, 2020, 390: 124651. [7] 陈思思, 唐兴颖, 任鹏炜, 等. 催化剂在生物质水热碳化过程中的应用研究进展[J]. 环境工程, 2023, 41(4): 195-204. CHEN S S, TANG X Y, REN P W, et al.Research progress on application of catalysts in hydrothermal carbonization process of biomass[J]. Environmental engineering, 2023, 41(4): 195-204. [8] MA R, FAKUDZE S, SHANG Q Q, et al.Catalytic hydrothermal carbonization of pomelo peel for enhanced combustibility of coal/hydrochar blends and reduced CO2 emission[J]. Fuel, 2021, 304: 121422. [9] HUANG Y P, SHEN D K, WANG Z H.Preparation of citric acid-sewage sludge hydrochar and its adsorption performance for Pb(II) in aqueous solution[J]. Polymers, 2022, 14(5): 968. [10] ZHANG S, SHENG K C, YAN W, et al.Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization[J]. Chemosphere, 2021, 263: 128093. [11] CHANPEE S, KAEWTRAKULCHAI N, KHEMASIRI N, et al.Nanoporous carbon from oil palm leaves via hydrothermal carbonization-combined KOH activation for paraquat removal[J]. Molecules, 2022, 27(16): 5309. [12] TU W W, LIU Y C, XIE Z F, et al.A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: preparation, characterization and adsorption properties[J]. Journal of colloid and interface science, 2021, 593: 390-407. [13] 徐青, 彭伟超, 杨威, 等. 废弃物干酒糟生物质热解特性及动力学研究[J]. 太阳能学报, 2022, 43(7): 424-429. XU Q, PENG W C, YANG W, et al.Study on biomass pyrolysis characterization and kinetics of waste dried distiller’s grains[J]. Acta energiae solaris sinica, 2022, 43(7): 424-429. [14] 张超越. 基于水热碳化的水葫芦资源化利用的研究: 着眼于燃料品质的提升[D]. 广州: 华南理工大学, 2021. ZHANG C Y.Study on resource utilization of water hyacinth based on hydrothermal carbonization-focusing on the improvement of fuel quality[D]. Guangzhou: South China University of Technology, 2021. [15] MA R, FAKUDZE S, LIU S, et al.Surfactants/citric acid catalyzed hydrothermal carbonization of pomelo peel for solid fuels: conversion mechanism and combustion performance[J]. Fuel, 2023, 342: 127762. [16] DING Z H, ZHANG L Y, MO H J, et al.Microwave-assisted catalytic hydrothermal carbonization of Laminaria Japonica for hydrochars catalyzed and activated by potassium compounds[J]. Bioresource technology, 2021, 341: 125835. [17] LEI Q, KANNAN S, RAGHAVAN V.Uncatalyzed and acid-aided microwave hydrothermal carbonization of orange peel waste[J]. Waste management, 2021, 126: 106-118. [18] WILK M, ŚLIZ M, CZERWIŃSKA K, et al. The effect of an acid catalyst on the hydrothermal carbonization of sewage sludge[J]. Journal of environmental management, 2023, 345: 118820. [19] WANG Y Y, CAO X F, SUN S N, et al.Carbon microspheres prepared from the hemicelluloses-rich pre-hydrolysis liquor for contaminant removal[J]. Carbohydrate polymers, 2019, 213: 296-303. [20] ZHANG X J, ZHANG L, LI A M.Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal[J]. Journal of environmental management, 2018, 206: 989-998. [21] 张涛, 王彬彬, 李瑶. 基于玉米秸秆的氮掺杂多孔碳制备及其对CO2吸附和CO2/N2分离性能研究[J]. 河南理工大学学报(自然科学版), 2022, 41(6): 174-180. ZHANG T, WANG B B, LI Y.Preparation of stalk-based nitrogen-doped porous carbon and its CO2 adsorption and CO2/N2 separation properties[J]. Journal of Henan Polytechnic University(natural science), 2022, 41(6): 174-180. [22] SUSANTI R F, ARIE A A, KRISTIANTO H, et al.Activated carbon from citric acid catalyzed hydrothermal carbonization and chemical activation of salacca peel as potential electrode for lithium ion capacitor’s cathode[J]. Ionics, 2019, 25(8): 3915-3925. [23] 马丽, 宋申, 杨光智. 纤维素基多孔碳的制备及其CO2吸附性能研究[J]. 有色金属材料与工程, 2021, 42(4): 27-32. MA L, SONG S, YANG G Z.Preparation of cellulose-based porous carbon and its CO2 adsorption performance[J]. Nonferrous metal materials and engineering, 2021, 42(4): 27-32. [24] 郭淑青, 李硕, 程陈, 等. 豆制品废水同荷叶水热碳化对水热焦特性的影响[J]. 太阳能学报, 2023, 44(2): 205-209. GUO S Q, LI S, CHENG C, et al.Effect of bean-processing wastewater combined with lotus leaves hydrothermal carbonization on hydrochar characteristics[J]. Acta energiae solaris sinica, 2023, 44(2): 205-209. [25] CHEN H Y, YANG X J, LIU Y L, et al.KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers[J]. Waste management, 2021, 130: 82-92. [26] ZHANG C Y, MA X Q, CHEN X F, et al.Conversion of water hyacinth to value-added fuel via hydrothermal carbonization[J]. Energy, 2020, 197: 117193. [27] 杨诗杰. 竹基多孔炭的制备及其电化学性能研究[D]. 徐州: 中国矿业大学, 2023. YANG S J.Preparation and electrochemical properties of bamboo-based porous carbon[D]. Xuzhou: China University of Mining and Technology, 2023. [28] 郝素芬. 木质纤维素基碳材料的制备及其性能研究[D]. 呼和浩特: 内蒙古农业大学, 2023. HAO S F.Preparation and properties of lignocellulose-based carbon materials[D]. Hohhot: Inner Mongolia Agricultural University, 2023.