不同聚光方式下的光热SCO2发电系统经济性与环保性分析

张一岑, 范刚, 毕京访, 王宇兴, 戴义平

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 479-487.

PDF(2381 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2381 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 479-487. DOI: 10.19912/j.0254-0096.tynxb.2023-1588

不同聚光方式下的光热SCO2发电系统经济性与环保性分析

  • 张一岑, 范刚, 毕京访, 王宇兴, 戴义平
作者信息 +

ECONOMIC AND ENVIRONMENTAL ANALYSIS OF SCO2 POWER SYSTEM UNDER DIFFERENT SOLAR CONCENTRATING METHODS

  • Zhang Yicen, Fan Gang, Bi Jingfang, Wang Yuxing, Dai Yiping
Author information +
文章历史 +

摘要

分析分别在线性菲涅尔式、槽形抛物面和塔式聚光方式下的SCO2发电系统的经济性和环保性,同时比较不同种类的储热工质和SCO2循环型式对系统性能的影响,并对系统参数进行多目标优化设计。结果表明:降低低温储热罐内工质温度或增大高温储罐内工质温度可减少投资成本;基于塔式集热器和再压缩式SCO2循环的光热SCO2发电系统兼具最佳热经济性和环保性,其中使用NaCl-KCl-MgCl2三元高温熔融盐作为储热工质。在德令哈地区该系统全生命周期内度电成本为0.131美元/kWh,输出每kWh电产生的CO2当量排放为24.3 g/kWh。

Abstract

In this paper, the economic and environmental performance of SCO2 power systems under linear Fresnel, trough parabolic and tower concentrating methods are analyzed respectively, and the effects of different thermal energy storage working fluids and SCO2 cycles on system performance are compared. Finally, the multi-objective optimization is conducted for the proposed systems. The results show that increasing the hot tank temperature or decreasing the cold tank temperature contribute to lower investment cost. The SPT plant integrated with recompression SCO2 cycle and NaCl-KCl-MgCl2 molten salt as the thermal storage medium provides the best thermo-economic and environmental performance. In Delingha, the system cost is 0.131 $/kWh over the life sycle and produces 24.3 g/kWh of CO2-equivalent emissions per kWh of output.

关键词

聚光太阳能 / 经济性分析 / 环保性影响 / 超临界CO2循环

Key words

concentrated solar power / economic analysis / environmental impact / supercritical CO2 cycle

引用本文

导出引用
张一岑, 范刚, 毕京访, 王宇兴, 戴义平. 不同聚光方式下的光热SCO2发电系统经济性与环保性分析[J]. 太阳能学报. 2025, 46(2): 479-487 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1588
Zhang Yicen, Fan Gang, Bi Jingfang, Wang Yuxing, Dai Yiping. ECONOMIC AND ENVIRONMENTAL ANALYSIS OF SCO2 POWER SYSTEM UNDER DIFFERENT SOLAR CONCENTRATING METHODS[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 479-487 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1588
中图分类号: TK514   

参考文献

[1] 王志峰, 陈晨, 杜风丽, 等. 中国太阳能热发电行业蓝皮书2024[R]. 北京: 国家太阳能光热产业技术创新战略联盟, 2025.
WANG Z F, CHEN C, DU F L, et al.China Solar thermal power generation industry blue book 2024[R]. Beijing: National Solar Thermal Industry Technology Innovation Strategic Alliance, 2025.
[2] KINCAID N, MUNGAS G, KRAMER N, et al.An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver[J]. Applied energy, 2018, 231: 1109-1121.
[3] 颜建国, 朱凤岭, 郭鹏程, 等. 超临界CO2在内凸管内对流传热强化试验研究[J]. 太阳能学报, 2020, 41(7): 244-250.
YAN J G, ZHU F L, GUO P C, et al.Experimental study on heat transfer enhancement of supercritical CO2 flowing in an inner convex tube[J]. Acta energiae solaris sinica, 2020, 41(7): 244-250.
[4] 何吉祥, 朱兵国, 彭斌, 等. 太阳能热发电中超临界压力CO2在渐扩变截面圆管内冷却传热强化机理[J]. 太阳能学报, 2023, 44(9): 249-256.
HE J X, ZHU B G, PENG B, et al.Cooling heat transfer enhancement mechanism of supercritical pressure CO2 in diverging variable cross-section circular tube in solar thermal power generation[J]. Acta energiae solaris sinica, 2023, 44(9): 249-256.
[5] SONG J, WANG Y X, WANG K, et al.Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: thermoeconomic assessment of various configurations[J]. Renewable energy, 2021, 174: 1020-1035.
[6] WANG K, LI M J, GUO J Q, et al.A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants[J]. Applied energy, 2018, 212: 109-121.
[7] 吴毅, 王佳莹, 王明坤, 等. 基于超临界CO2布雷顿循环的塔式太阳能集热发电系统[J]. 西安交通大学学报, 2016, 50(5): 108-113.
WU Y, WANG J Y, WANG M K, et al.A towered solar thermal power plant based on supercritical CO2 brayton cycle[J]. Journal of Xi’an Jiaotong University, 2016, 50(5): 108-113.
[8] EHSAN M M, GUAN Z Q, GURGENCI H, et al.Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: review and a case study[J]. Renewable and sustainable energy reviews, 2020, 132: 110055.
[9] WHITE M T, BIANCHI G, CHAI L, et al.Review of supercritical CO2 technologies and systems for power generation[J]. Applied thermal engineering, 2021, 185: 116447.
[10] WAGNER M J.Results and comparison from the SAM linear Fresnel technology performance model[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2012.
[11] National Renewable Energy Laboratory (NREL). Solar advisor model (SAM). Version2021.12.2 [software]. [2022 -07-14], https://sam.nrel.gov/download.html.
[12] DUDLEY V E, KOLB G J, MAHONEY A R, et al.Test results: SEGS LS-2 solar collector[R]. Sandia National Laboratory, Albuquerque, US, 1994
[13] SIEBERS D, KRAABEL J S. Estimating convective energy losses from solar central receivers[R]. Livermore (CA): Sandia National Laboratory; 1984. Report No.: SAND-84-8717.
[14] 杜春旭, 吴玉庭, 王普, 等. 塔式太阳能发电系统镜场面积估算方法[C]//中国工程热物理学会, 武汉, 中国, 2011.
DU C X, WU Y T, WANG P, et al.Estimation of heliostat field area for the solar power tower plant[C]//Chinese Society of Engineering Thermophysics, Wuhan, China, 2011.
[15] 王坤. 超临界二氧化碳太阳能热发电系统的高效集成及其聚光传热过程的优化调控研究[D]. 西安: 西安交通大学, 2018.
WANG K.Study on the integration of S-CO2 Brayton cycles in a solar power tower and the optimization of its concentrating and heat transfer processes[D]. Xi’an: Xi’an Jiaotong University, 2018.
[16] KURUP P, TURCHI C. Parabolic trough collector cost update for the system advisor model (SAM)[R]. Golden (CO): National Renewable Energy Laboratory, 2015. Report No.: NREL/TP-6A20-65228.
[17] AKBARI A D, MAHMOUDI S M S. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle[J]. Energy, 2014, 78: 501-512.
[18] PIEROBON L, NGUYEN T V, LARSEN U, et al.Multi-objective optimization of organic Rankine cycles for waste heat recovery: application in an offshore platform[J]. Energy, 2013, 58: 538-549.
[19] SMITH R.Chemical process: design and integration[M]. New Jersey: John Wiley & Sons; 2005.
[20] PARRADO C, MARZO A, FUENTEALBA E, et al.2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants[J]. Renewable and sustainable energy reviews, 2016, 57: 505-514.
[21] MOHAN G, VENKATARAMAN M, GOMEZ-VIDAL J, et al.Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage[J]. Energy conversion and management, 2018, 167: 156-164.
[22] TURTON R, BAILIE R, WHITING W, et al.Analysis, synthesis and design of chemical processes[M]. London: Pearson Education, 2008.
[23] 中华人民共和国. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
PRC. China statistical yearbook 2020[M]. Beijing: China Statistics Press, 2020.
[24] KUENLIN A, AUGSBURGER G, GERBER L, et al.Life cycle assessment and environomic optimization of concentrating solar thermal power plants[C]//26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS2013). Gulin, China, 2013.
[25] Weather data[EB/OL]. EnergyPlus, [2022-09-02], https://energyplus.net/weather-location/asia_wmo_region_2/CHN/CHN_Qinghai.Haixi.Delingha.527370_SWERA.
[26] DELKASAR MAHER S, SARVGHAD M, OLIVARES R, et al.Critical components in supercritical CO2 brayton cycle power blocks for solar power systems: degradation mechanisms and failure consequences[J]. Solar energy materials and solar cells, 2022, 242: 111768.
[27] 包子阳, 余继周. 智能优化算法及其MATLAB实例[M]. 北京: 电子工业出版社, 2016.
BAO Z Y, YU J Z.Intelligent optimization algorithm and its MATLAB example[M]. Beijing: Publishing House of Electronics Industry, 2016.
[28] JING R, WANG M, ZHANG Z H, et al.Comparative study of posteriori decision-making methods when designing building integrated energy systems with multi-objectives[J]. Energy and buildings, 2019, 194: 123-139.

基金

国家自然科学基金(51976145)

PDF(2381 KB)

Accesses

Citation

Detail

段落导航
相关文章

/