针对综合能源系统能源结构改变导致系统灵活性和环保性下降的问题,提出考虑功率可调节裕度的区域综合能系统多时间尺度优化调度模型。首先,重点分析净负荷预测误差和可调度机组对系统可调节能力的影响;其次,引入阶梯式碳交易机制,建立日前调度模型,以实现系统低碳经济运行;然后,以系统动态功率可调节裕度最大为目标,建立日内滚动优化调度模型;最后,构建综合能源系统,并设置多个场景,通过CPLEX进行多目标优化计算。仿真结果表明,所建优化模型提高系统的可调节裕度。因此,所提出的优化调度方法可实现系统在低碳经济运行的同时,提高系统多能源功率的可调节裕度,增强系统的灵活性。
Abstract
Aiming at the problem that the energy structure change of integrated energy system leads to the decrease of system flexibility and environmental protection, a multi-time scale optimal scheduling model for regional integrated energy system considering power adjustable margin is proposed in this paper. Firstly, the influence of net load forecasting errors and dispatchable units on the system’s adjustable capacity is analyzed. Secondly, based on the introduction of the stepped carbon trading mechanism, the day-ahead scheduling model considering the dual response mechanism of supply and demand is established to realize the low-carbon economic operation of the system. Then, the optimal scheduling model of intra-day rolling is established with the goal of maximum adjustment margin of dynamic power. Finally, the integrated energy system is constructed and multiple scenarios are set up to perform multi-objective optimization calculations through CPLEX. The simulation results show that the optimized model improves the adjustable margin of the system. Therefore, the proposed optimal scheduling method can realize the system running in low carbon economy, improve the adjustable margin of multi-energy power of the system and enhance the flexibility of the system.
关键词
调度优化 /
综合能源系统 /
数学模型 /
灵活性供需平衡 /
动态功率调节裕度
Key words
optimization scheduling /
integrated energy system /
mathematical models /
flexibility supply and demand balance /
dynamic power adjustment margin
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 袁世琦, 潘鹏程, 魏业文, 等. 园区综合能源系统低碳经济优化调度模型研究[J]. 太阳能学报, 2024, 45(3): 347-356.
YUAN S Q, PAN P C, WEI Y W, et al.Study on low-carbon economic optimal scheduling model of community integrated energy system[J]. Acta energiae solaris sinica, 2024, 45(3): 347-356.
[2] ZHANG D, YANG C.Development of integrated energy system and impact on power grid[C]//2021 IEEE 4th International Conference on Renewable Energy and Power Engineering (REPE). Beijing, China, 2021: 233-237.
[3] CHEN Y, LIU B, LIU S, et al.Multi objective operation optimization of multi energy coupling integrated energy system[C]//The 10th Renewable Power Generation Conference (RPG 2021). Online Conference, 2021: 771-778.
[4] 叶浩劼, 谢丽蓉, 邓佳桐, 等. 考虑碳交易机制的风-火协调低碳优化调度[J]. 太阳能学报, 2023, 44(6): 106-112.
YE H J, XIE L R, DENG J T, et al.Wind-fire coordinated low-carbon optimal dispatch considering carbon trading mechanism[J]. Acta energiae solaris sinica, 2023, 44(6): 106-112.
[5] WEI L, CHEN Z.Cooperative optimal scheduling of multi energy system considering flexible load[C]//2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). Beihai, China, 2021: 168-171.
[6] 司方远, 张宁, 韩英华, 等. 面向多元灵活资源聚合的区域综合能源系统主动调节能力评估与优化: 关键问题与研究架构[J]. 中国电机工程学报, 2024, 44(6): 2097-2119.
SI F Y, ZHANG N, HAN Y H, et al.Fundamental problems and research framework for assessment and optimization of the functional regulation capacity of the regional integrated energy system under the aggregation of diversified and flexible resources[J]. Proceedings of the CSEE, 2024, 44(6): 2097-2119.
[7] 苏承国, 申建建, 王沛霖, 等. 基于电源灵活性裕度的含风电电力系统多源协调调度方法[J]. 电力系统自动化, 2018, 42(17): 111-119.
SU C G, SHEN J J, WANG P L, et al.Coordinated dispatching method for wind-turbine-integrated power system with multi-type power sources based on power flexibility margin[J]. Automation of electric power systems, 2018, 42(17): 111-119.
[8] ZHAO Y F, WANG C F, ZHANG Z W, et al.Flexibility evaluation method of power system considering the impact of multi-energy coupling[C]//2021 IEEE/IAS 57th Industrial and Commercial Power Systems Technical Conference (I&CPS). Las Vegas, NV, USA, 2021: 1-10.
[9] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158.
LU Z X, LI H B, QIAO Y.Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of electric power systems, 2016, 40(13): 147-158.
[10] 赵振宇, 解冰清. 计及风光互补特性的风光容量优化配置模型[J]. 太阳能学报, 2023, 44(8): 149-156.
ZHAO Z Y, XIE B Q.Optimal allocation model of wind-solar capacity considering wind-solar complementary characteristics[J]. Acta energiae solaris sinica, 2023, 44(8): 149-156.
[11] CHEN P, ZHEN Z, WANG F, et al.Day-ahead modified dispatching model considering power system flexibility[C]//2021 IEEE Industry Applications Society Annual Meeting (IAS). Vancouver, BC, Canada, 2021: 1-6.
[12] 李志颖, 王鸿, 王致杰.考虑功率可调节裕度的综合能源系统云边协同优化[J]. 上海电机学院学报, 2024, 27(3): 125-130.
LI Z Y, WANG H, WANG Z J.Cloud-edge collaborative optimization of integrated energy system considering power adjustable margin[J]. Journal of Shanghai Dianji University, 2024, 27(3): 125-130.
[13] 李志颖, 王鸿, 王致杰. 基于多能源耦合的区域综合能源系统主动调节能力评估[J]. 上海电机学院学报, 2023, 26(6): 330-336.
LI Z Y, WANG H, WANG Z J.Evaluation of active regulation capacity of regional integrated energy systems based on multi-energy coupling[J]. Journal of Shanghai Dianji University, 2023, 26(6): 330-336.
[14] 胡福年, 周小博, 张彭成, 等. 计及碳捕集的综合能源系统低碳经济优化调度[J]. 太阳能学报, 2024, 45(3): 419-427.
HU F N, ZHOU X B, ZHANG P C, et al.Low carbon economy optimal dispatching of integrated energy system taking into account carbon capture[J]. Acta energiae solaris sinica, 2024, 45(3): 419-427.
[15] 王利猛, 刘永宁, 许成哲. 考虑碳交易机制的源-荷-储协整优化模型[J]. 太阳能学报, 2023, 44(5): 106-112.
WANG L M, LIU Y N, XU C Z.Source-load-storage cointegration optimization model considering carbon trading mechanism[J]. Acta energiae solaris sinica, 2023, 44(5): 106-112.
[16] CHEN K R, CHEN W Q, LIN C Y, et al.Integrated energy system day-ahead dispatch considering supply-side and demand-side flexibility[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). Taiyuan, China, 2021: 1662-1667.
[17] 张彩玲, 王爽, 葛淑娜, 等. 计及灵活需求响应和碳-绿证交易的综合能源系统优化调度[J]. 中国电力, 2024, 57(5): 14-25.
ZHANG C L, WANG S, GE S N, et al.Optimal scheduling of integrated energy systems considering flexible demand response and carbon emission-green certificate joint trading[J]. Electric power, 2024, 57(5): 14-25.
[18] 邢晓敏, 刘洋, 郭长星, 等. 计及碳捕集与需求响应的综合能源系统优化调度[J]. 吉林电力, 2023, 51(4): 7-13.
XING X M, LIU Y, GUO C X, et al.Optimal dispatch of integrated energy system considering carbon capture and demand response[J]. Jilin Electric Power, 2023, 51(4): 7-13.
[19] 杨洪明, 刘俊鹏, 梁芮, 等. 考虑动态功率调节裕度的高比例风电系统水-火-荷分布鲁棒优化调度[J]. 系统工程理论与实践, 2021, 41(9): 2327-2337.
YANG H M, LIU J P, LIANG R, et al.Distributionally robust optimal dispatching of hydro-thermal-load resources for high penetration of wind system with dynamic power regulation margin[J]. Systems engineering-theory & practice, 2021, 41(9): 2327-2337.
[20] CHEN Z M, LI Y, PAN W Q, et al.A multi-objective optimal scheduling model of a virtual power plant considering uncertainties[C]//2023 8th Asia Conference on Power and Electrical Engineering (ACPEE). Tianjin, China, 2023: 981-986.
[21] 陈锦鹏. 考虑阶梯式碳交易与灵活性资源的综合能源系统优化调度[D]. 武汉: 武汉大学, 2022.
CHEN J P.Optimal scheduling of integrated energy system considering stepped carbon trading and flexible resources[D]. Wuhan: Wuhan University, 2022.
[22] FENG J, HU J Y, WANG Y, et al.Distributed robust optimal scheduling for integrated energy system considering source-load uncertainty[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). Taiyuan, China, 2021: 1462-1467.