The ground heat fluxes at two observation sites, TGL and XDT, in the permafrost zone of the Qinghai-Tibet Plateau from 2010 to 2012 are estimated based on the half-order method using observations combined with remotely sensed data, and compared and analyzed with “observations” (the ground heat flux is calculated from the observations of the soil heat flux at depth of 10 cm and the soil temperature at depth of 5 cm) and the three remote sensing estimation methods (GLEAM, PM-RS, and the combined method). The results show that 1) the G0 estimated by the half-order method is in good agreement with the observed G0, and the estimation accuracy is high; 2) the half-order method performs better than the GLEAM, PM-RS and the combined methods, with the R of the estimated G0 for the two sites of 0.85 and 0.81, respectively, and the Bias of
Li Xiao, Zhao Lin, Li Yan, Li Xiangfei, Zhao Jianting, Xiao Minxuan.
ESTIMATION OF SURFACE SOIL HEAT FLUX IN PERMAFROST IN QINGHAI-TIBET PLATEAU[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 124-134 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1596
中图分类号:
P422.4
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000. ZHOU Y W, GUO D X, QIU G Q, et al.Geocryology in China[M]. Beijing: Science Press, 2000. [2] ZOU D F, ZHAO L, SHENG Y, et al.A new map of permafrost distribution on the Tibetan Plateau[J]. The cryosphere, 2017, 11(6): 2527-2542. [3] WU X B, NAN Z T, ZHAO S P, et al.Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet Plateau[J]. Permafrost and periglacial processes, 2018, 29(2): 86-99. [4] 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795. CHENG G D, ZHAO L, LI R, et al.Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese science bulletin, 2019, 64(27): 2783-2795. [5] 赵林, 盛煜. 青藏高原多年冻土及变化[M]. 北京: 科学出版社, 2019. ZHAO L, SHENG Y.Permafrost and its changes in Qinghai-Tibet Plateau[M]. Beijing: Science Press, 2019. [6] MA Y M, MA W Q, ZHONG L, et al.Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia[J]. Scientific reports, 2017, 7: 44574. [7] 冯璐. 藏北高原辐射平衡分量与土壤热通量的卫星遥感估算研究[D]. 合肥: 中国科学技术大学, 2016. FENG L.Estimation of radiation balance component and soil heat flux in northern Tibet Plateau by satellite remote sensing[D]. Hefei: University of Science and Technology of China, 2016. [8] LIU Z F.Accuracy of five ground heat flux empirical simulation methods in the surface-energy-balance-based remote-sensing evapotranspiration models[J]. Hydrology and earth system sciences, 2022, 26(23): 6207-6226. [9] 张立杰, 江灏, 李磊. 土壤中热量传输计算的研究进展与展望[J]. 冰川冻土, 2004, 26(5): 569-575. ZHANG L J, JIANG H, LI L.Study of calculation of soil heat conduction: progress and prospect[J]. Journal of glaciology and geocryology, 2004, 26(5): 569-575. [10] 张乐乐, 高黎明, 赵林, 等. 基于ITPCAS数据的青藏高原太阳总辐射时空变化特征[J]. 太阳能学报, 2019, 40(9): 2521-2529. ZHANG L L, GAO L M, ZHAO L, et al.Spatial and temporal characteristics of global solar radiation over Qinghai-Tibetan Plateau based on ITPCAS dataset[J]. Acta energiae solaris sinica, 2019, 40(9): 2521-2529. [11] 赵斌, 谭恒, 何锁盈, 等. 高原高寒地区光伏组件背板冷却对输出功率影响的实验研究[J]. 太阳能学报, 2022, 43(8): 122-129. ZHAO B, TAN H, HE S Y, et al.Experimental study on influence of backplane cooling on power output of photovoltaic modules in frigid plateau region[J]. Acta energiae solaris sinica, 2022, 43(8): 122-129. [12] 翁楚彬, 周雄冬, 徐梦珍. 西藏可再生能源开发适宜度评价[J]. 太阳能学报, 2023 44(1): 475-484. WONG C B, ZHOU X D, XU M Z.Research on suitability of renewable energy exploitation in Tibet[J]. Acta energies solaris sinica, 2022, 44(1): 475-484. [13] 胡田飞, 刘建坤, 常键, 等. 基于新能源制冷技术的多年冻土路基维护方法研究[J]. 太阳能学报, 2020, 41(2): 253-261. HU T F, LIU J K, CHANG J, et al.Research on maintenance methods for permafrost embankment based on new-energy refrigeration technologies[J]. Acta energiae solaris sinica, 2020, 41(2): 253-261. [14] MAYOCCHI C L, BRISTOW K L.Soil surface heat flux: some general questions and comments on measurements[J]. Agricultural and forest meteorology, 1995, 75(1): 43-50. [15] GAO Z M, RUSSELL E S, MISSIK J E C, et al. A novel approach to evaluate soil heat flux calculation: an analytical review of nine methods[J]. Journal of geophysical research: atmospheres, 2017, 122(13): 6934-6949. [16] 徐自为, 刘绍民, 徐同仁, 等. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889. XU Z W, LIU S M, XU T R, et al.The observation and calculation method of soil heat flux and its impact on the energy balance closure[J]. Advances in earth science, 2013, 28(8): 875-889. [17] BRUTSAERT W.Evaporation into the Atmosphere[M]. Heidelberg: DordrechtSpringer Netherlands, 1982 [18] KUSTAS W P, DAUGHTRY C S T, VAN OEVELEN P J. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices[J]. Remote sensing of environment, 1993, 46(3): 319-330. [19] BASTIAANSSEN W G M, PELGRUM H, WANG J, et al. A remote sensing surface energy balance algorithm for land (SEBAL)[J]. Journal of hydrology, 1998, 212/213: 213-229. [20] MA Y M, ISHIKAWA H, TSUKAMOTO O, et al.Regionalization of surface fluxes over heterogeneous landscape of the Tibetan Plateau by using satellite remote sensing data[J]. Journal of the Meteorological Society of Japan serⅡ, 2003, 81(2): 277-293. [21] ZHONG L, MA Y M, HU Z Y, et al.Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites[J]. Atmospheric chemistry and physics, 2019, 19(8): 5529-5541. [22] MIRALLES D G, HOLMES T R H, DE JEU R A M, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and earth system sciences, 2011, 15(2): 453-469. [23] MU Q Z, ZHAO M S, RUNNING S W.Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote sensing of environment, 2011, 115(8): 1781-1800. [24] YANG C, WU T H, HU G J, et al.Approaches to assessing the daily average ground surface soil heat flux on a regional scale over the Qinghai-Tibet Plateau[J]. Agricultural and forest meteorology, 2023, 336: 109494. [25] WANG J F, BRAS R L.Ground heat flux estimated from surface soil temperature[J]. Journal of hydrology, 1999, 216(3/4): 214-226. [26] BENNETT W B, WANG J F, BRAS R L.Estimation of global ground heat flux[J]. Journal of hydrometeorology, 2008, 9(4): 744-759. [27] HU H C, LI N N, TIAN F Q, et al.Modification of harmonic analysis model for diurnal surface soil heat flux estimate from multiple remote sensing data[J]. Journal of applied remote sensing, 2018, 12: 036009. [28] 李娜娜. 利用多源遥感观测数据的区域地表土壤热通量估算方法研究[D]. 北京: 中国科学院大学, 2015. LI N N.Rigional estimation of the at-surface soil heat flux by multi-source remote sensing observations[D]. Beijing: University of Chinese Academy of Sciences, 2015. [29] SADEGHI M, EBTEHAJ A, GUALA M, et al.Physical connection of sensible and ground heat flux[J]. Journal of hydrology, 2021, 602: 126687. [30] 李韧, 赵林, 丁永建, 等. 地表能量变化对多年冻土活动层融化过程的影响[J]. 冰川冻土, 2011, 33(6): 1235-1242. LI R, ZHAO L, DING Y J, et al.Impact of surface energy variation on thawing processes within active layer of permafrost[J]. Journal of glaciology and geocryology, 2011, 33(6): 1235-1242. [31] 殷路辉, 赵林, 胡国杰, 等. 青藏高原工程走廊3个监测点多年冻土温度序列重建[J]. 科学通报, 2023, 68(15): 1985-2000. YIN L H, ZHAO L, HU G J, et al.Reconstruction of past permafrost temperature sequences at three monitoring sites along the Qinghai-Tibet Engineering Corridor[J]. Chinese science bulletin, 2023, 68(15): 1985-2000. [32] YANG K, WANG J M.A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J]. Science in China series D: earth sciences, 2008, 51(5): 721-729. [33] 江灏, 程国栋, 王可丽. 青藏高原地表温度的比较分析[J]. 地球物理学报, 2006, 49(2): 391-397. JIANG H, CHENG G D, WANG K L.Analyzing and measuring the surface temperature of Qinghai-Tibet Plateau[J]. Chinese journal of geophysics, 2006, 49(2): 391-397. [34] 杨成, 姚济敏, 赵林, 等. 藏北高原多年冻土区地表反照率时空变化特征[J]. 冰川冻土, 2016, 38(6): 1518-1528. YANG C, YAO J M, ZHAO L, et al.Temporal and spatial variation characteristics of surface albedo in permafrost region of northern Tibetan Plateau[J]. Journal of glaciology and geocryology, 2016, 38(6): 1518-1528. [35] LI Y, HUANG C L, HOU J L, et al.Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China[J]. Agricultural and forest meteorology, 2017, 244: 82-97. [36] GUTMAN G, IGNATOV A.The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International journal of remote sensing, 1998, 19(8): 1533-1543. [37] WILLIAMS P J, SMITH M W.The frozen Earth[M]. Cambridge, UK: Cambridge University Press, 1989. [38] WARRICK A W.Analytical solutions to the one-dimensional linearized moisture flow equation for arbitrary input[J]. Soil science, 1975, 120(2): 79-84. [39] SADEGHI M, TULLER M, WARRICK A W, et al.An analytical model for estimation of land surface net water flux from near-surface soil moisture observations[J]. Journal of hydrology, 2019, 570: 26-37. [40] 刘艺阗, 姚济敏, 赵林, 等. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. LIU Y T, YAO J M, ZHAO L, et al.Surface energy processes during freeze-thaw cycle in Tanggula permafrost region of Qinghai-Tibet Plateau[J]. Journal of glaciology and geocryology, 2021, 43(4): 1073-1082. [41] YAO J M, ZHAO L, GU L L, et al.The surface energy budget in the permafrost region of the Tibetan Plateau[J]. Atmospheric research, 2011, 102(4): 394-407. [42] WANG J Y, LUO S Q, LV Z B, et al. Improving ground heat flux estimation: considering the effect of freeze/thaw process on the seasonally frozen ground[J]. Journal of geophysical research (atmospheres), 2021, 126(24): e2021JD035445. [43] 李娜娜, 贾立, 卢静. 复杂下垫面地表土壤热通量算法改进: 以黑河流域为例[J]. 中国科学: 地球科学, 2015, 45(4): 494-507. LI N N, JIA L, LU J.An improved algorithm to estimate the surface soil heat flux over a heterogeneous surface: a case study in the Heihe River Basin[J]. Scientia sinica (terrae), 2015, 45(4): 494-507. [44] JOHANSEN O.Thermal conductivity of soils[D]. Trondheim:Norwegian University of Science and Technology, 1977. [45] 杨成. 青藏高原地表土壤热通量的时空变化特征研究[D]. 北京: 中国科学院大学, 2020. YANG C.Temporal and spatial characteristics of ground surface soil heat flux over the Qinghai-Tibet Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2020. [46] 罗布, 智海, 多典洛珠. 青藏高原多年冻土区典型下垫面冻融过程作用分析[J]. 高原山地气象研究, 2018, 38(1): 11-16. LUO B, ZHI H, DUOD IANLUOZHU.Analysis of freezing and thawing processes on typical underlying surface in permafrost area of Tibet Plateau[J]. Plateau and mountain meteorology research, 2018, 38(1): 11-16. [47] 肖瑶, 赵林, 李韧, 等. 青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征[J]. 冰川冻土, 2011, 33(5): 1033-1039. XIAO Y, ZHAO L, LI R, et al.Seasonal variation characteristics of surface energy budget components in permafrost regions of northern Tibetan Plateau[J]. Journal of glaciology and geocryology, 2011, 33(5): 1033-1039. [48] 李韧, 季国良, 李述训, 等. 五道梁地区土壤热状况的讨论[J]. 太阳能学报, 2005, 26(3): 299-303. LI R, JI G L, LI S X, et al.Soil heat condition discussion of Wudaoliang region[J]. Acta energiae solaris sinica, 2005, 26(3): 299-303. [49] HU G J, ZHAO L, LI R, et al.Dynamics of the freeze-thaw front of active layer on the Qinghai-Tibet Plateau[J]. Geoderma, 2023, 430: 116353. [50] 葛骏, 余晔, 李振朝, 等. 青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J]. 高原气象, 2016, 35(3): 608-620. GE J, YU Y, LI Z C, et al.Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau[J]. Plateau meteorology, 2016, 35(3): 608-620.