多尺度特征提取的Transformer短期风电功率预测

徐武, 范鑫豪, 沈智方, 刘洋

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 640-648.

PDF(2000 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2000 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 640-648. DOI: 10.19912/j.0254-0096.tynxb.2023-1604

多尺度特征提取的Transformer短期风电功率预测

  • 徐武, 范鑫豪, 沈智方, 刘洋
作者信息 +

SHORT-TERM WIND POWER PREDICTION USING TRANSFORMER WITH MULTI-SCALE FEATURE EXTRACTION

  • Xu Wu, Fan Xinhao, Shen Zhifang, Liu Yang
Author information +
文章历史 +

摘要

针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。

Abstract

Upon addressing the issue of single-scale feature extraction for short-term wind power forecasting, a Transformer-based model known as “MTPNet” (multi-scale transformer power network) is developed. Firstly, based on the Transformer architecture, dimension-invariant embeddings is employed to design a multi-scale feature extraction network to mine the temporal characteristics within the wind power sequence, to ensure that the feature dimensions remain unchanged during feature extraction. Secondly, long short-term memory (LSTM) network with a fusion self-attention mechanism is used to capture the global dependencies between meteorological conditions and power output. Finally, the temporal characteristics of the wind power sequence and the dependencies on meteorological conditions are integrated to achieve short-term wind power prediction. Simulation results demonstrate that the prediction accuracy of MTPNet model is improved. Further ablation experiments confirm the reliability and effectiveness of each module in the model, highlighting its practical value.

关键词

风电功率预测 / Transformer / 注意力机制 / 特征提取 / 长短期记忆网络 / 维数不变嵌入层

Key words

wind power forecast / Transformer / attention mechanism / feature extraction / long short-term memory network / dimension invariant embedding

引用本文

导出引用
徐武, 范鑫豪, 沈智方, 刘洋. 多尺度特征提取的Transformer短期风电功率预测[J]. 太阳能学报. 2025, 46(2): 640-648 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1604
Xu Wu, Fan Xinhao, Shen Zhifang, Liu Yang. SHORT-TERM WIND POWER PREDICTION USING TRANSFORMER WITH MULTI-SCALE FEATURE EXTRACTION[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 640-648 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1604
中图分类号: TM614   

参考文献

[1] 赵铁成, 谢丽蓉, 叶家豪. 基于误差修正的NNA-ILSTM短期风电功率预测[J]. 智慧电力, 2022, 50(1): 29-36.
ZHAO T C, XIE L R, YE J H.NNA-ILSTM short term wind power prediction based on error correction[J]. Smart power, 2022, 50(1): 29-36.
[2] 史加荣, 赵丹梦, 王琳华, 等. 基于RR-VMD-LSTM的短期风电功率预测[J]. 电力系统保护与控制, 2021, 49(21): 63-70.
SHI J R, ZHAO D M, WANG L H, et al.Short-term wind power prediction based on RR-VMD-LSTM[J]. Power system protection and control, 2021, 49(21): 63-70.
[3] 张浩田, 温蜜, 李晋国, 等. 数据驱动的时间注意力卷积风电功率预测模型[J]. 太阳能学报, 2022, 43(10): 167-176.
ZHANG H T, WEN M, LI J G, et al.Data driven time attention convolution wind power prediction model[J]. Acta energiae solaris sinica, 2022, 43(10): 167-176.
[4] 杨国清, 刘世林, 王德意, 等. 基于Attention-GRU风速修正和Stacking的短期风电功率预测[J]. 太阳能学报, 2022, 43(12): 273-281.
YANG G Q, LIU S L, WANG D Y, et al.Short-term wind power forecasting based on Attention-GRU wind speed correction and stacking[J]. Acta energiae solaris sinica, 2022, 43(12): 273-281.
[5] 杨茂, 王达, 王小海, 等. 基于数据物理混合驱动的超短期风电功率预测模型[J]. 高电压技术, 2024, 50(11): 5132-5141.
YANG M, WANG D, WANG X H, et al.Ultra-short term wind power prediction method based on data physics hybrid driven model[J]. High voltage engineering, 2024, 50(11): 5132-5141.
[6] 翟保豫, 张龙, 徐志, 等. 基于WRF模式和风速误差修正的中期风电功率预测方法[J]. 智慧电力, 2023, 51(7): 31-38.
ZHAI B Y, ZHANG L, XU Z, et al.Mid-term wind power forecasting based on WRF mode and wind speed error correction[J]. Smart power, 2023, 51(7): 31-38.
[7] 杨子民, 彭小圣, 郎建勋, 等. 基于集群动态划分与BLSTM深度学习的风电集群短期功率预测[J]. 高电压技术, 2021, 47(4): 1195-1203.
YANG Z M, PENG X S, LANG J X, et al.Short-term wind power prediction based on dynamic cluster division and BLSTM deep learning method[J]. High voltage engineering, 2021, 47(4): 1195-1203.
[8] KOOHFAR S, WOLDEMARIAM W, KUMAR A.Prediction of electric vehicles charging demand: a transformer-based deep learning approach[J]. Sustainability, 2023, 15(3): 2105.
[9] ZHOU H Y, ZHANG S H, PENG J Q, et al.Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(12): 11106-11115.
[10] WU H X, XU J H, WANG J M, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[J/OL].2021: arXiv:2106.13008. https://arxiv.org/abs/2106.13008.
[11] 杨京渝, 罗隆福, 阳同光, 等. 基于气象特征挖掘和改进深度学习模型的风电功率短期预测[J]. 电力自动化设备, 2023, 43(3): 110-116.
YANG J Y, LUO L F, YANG T G, et al.Wind power short-term forecasting based on meteorological feature exploring and improved deep learning model[J]. Electric power automation equipment, 2023, 43(3): 110-116.
[12] 骆钊, 吴谕侯, 朱家祥, 等. 基于多尺度时间序列块自编码Transformer神经网络模型的风电超短期功率预测[J]. 电网技术, 2023, 47(9): 3527-3537.
LUO Z, WU Y H, ZHU J X, et al.Wind power forecasting based on multi-scale time series block auto-encoder transformer neural network model[J]. Power system technology, 2023, 47(9): 3527-3537.
[13] 李练兵, 高国强, 吴伟强, 等. 考虑特征重组与改进Transformer的风电功率短期日前预测方法[J]. 电网技术, 2024, 48(4): 1466-1480.
LI L B, GAO G Q, WU W Q, et al.Short-term day-ahead wind power prediction considering feature recombination and improved transformer[J]. Power system technology, 2024, 48(4): 1466-1480.
[14] WEN Q S, ZHOU T, ZHANG C L, et al. Transformers in time series: a survey[J/OL].2022: 2202.07125.https://arxiv.org/abs/2202.07125v5.
[15] ZHANG Y F, WU R, DASCALU S M, et al. Multi-scale transformer pyramid networks for multivariate time series forecasting[J/OL].2023: 2308.11946.https://arxiv.org/abs/2308.11946v1
[16] 张淑清, 杨振宁, 姜安琦, 等. 基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测[J]. 太阳能学报, 2022, 43(6): 204-211.
ZHANG S Q, YANG Z N, JIANG A Q, et al.Short term wind power prediction based on EN-SKPCA dimensionality reduction and FPA optimizing LSTMNN[J]. Acta energiae solaris sinica, 2022, 43(6): 204-211.
[17] ZHANG Y Z, XIONG R, HE H W, et al.Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE transactions on vehicular technology, 2018, 67(7): 5695-5705.
[18] 董俊, 刘瑞, 束洪春, 等. 基于BIRCH聚类的L-Transformer分布式光伏短期发电功率预测[J]. 高电压技术, 2024, 50(9): 3883-3893.
DONG J, LIU R, SHU H C, et al.Short-term distributed photovoltaic power generation prediction based on BIRCH clustering and L-Transformer[J]. High voltage engineering, 2024, 50(9): 3883-3893.
[19] PAN S W, YANG B, WANG S K, et al.Oil well production prediction based on CNN-LSTM model with self-attention mechanism[J]. Energy, 2023, 284: 128701.

基金

国家自然科学基金(U1802271)

PDF(2000 KB)

Accesses

Citation

Detail

段落导航
相关文章

/