基于形状记忆合金调控的太阳电池跟踪技术研究

袁畅, 齐德宇, 郑澳洲, 刘存良, 谢坤, 孟宪龙

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 393-400.

PDF(7321 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(7321 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 393-400. DOI: 10.19912/j.0254-0096.tynxb.2023-1606

基于形状记忆合金调控的太阳电池跟踪技术研究

  • 袁畅, 齐德宇, 郑澳洲, 刘存良, 谢坤, 孟宪龙
作者信息 +

RESEARCH ON SOLAR TRACKING TECHNOLOGY OF SOLAR CELL BASED ON SHAPE MEMORY ALLOY MODULATION

  • Yuan Chang, Qi Deyu, Zheng Aozhou, Liu Cunliang, Xie Kun, Meng Xianlong
Author information +
文章历史 +

摘要

提出一种基于形状记忆合金(SMA)驱动的太阳电池角度调节装置,根据SMA弹簧的力学和SMA电阻行为模型构建新型角度调节装置的控制方法和策略,实验验证不同驱动电压对装置性能的影响,发现在1.5 V驱动电压下装置响应速度快且恢复时间短,表现最佳。研究表明,此角度调整装置可显著提高太阳电池在不同时间的输出功率。

Abstract

This paper proposes a novel solar tracking device driven by shape memory alloys (SMA). The control method and strategy of this novel device are developed based on the mechanics of SMA springs and the electrical resistance model. Experimental results demonstrate the influence of different driving voltages on the device’s performance, revealing that the device exhibits optimal performance with a fast response speed and short recovery time when it is driven at 1.5 V. The research shows that this new angle adjustment device can significantly enhance the output power of solar cells in real-time working condition.

关键词

太阳能发电 / 太阳电池 / 形状记忆合金 / 追踪器 / I-V特性

Key words

solar power generation / solar cells / shape-memory alloy / tracker / I-V characteristic

引用本文

导出引用
袁畅, 齐德宇, 郑澳洲, 刘存良, 谢坤, 孟宪龙. 基于形状记忆合金调控的太阳电池跟踪技术研究[J]. 太阳能学报. 2025, 46(2): 393-400 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1606
Yuan Chang, Qi Deyu, Zheng Aozhou, Liu Cunliang, Xie Kun, Meng Xianlong. RESEARCH ON SOLAR TRACKING TECHNOLOGY OF SOLAR CELL BASED ON SHAPE MEMORY ALLOY MODULATION[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 393-400 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1606
中图分类号: TM615   

参考文献

[1] 于运峰, 吴秀芬, 李卫东, 等. 林业生物质能源发展趋势及现状探析[J]. 现代园艺, 2019(22): 188-189.
YU Y F, WU X F, LI W D, et al.Analysis on the development trend and present situation of forestry biomass energy[J]. Xiandai horticulture, 2019(22): 188-189.
[2] 庄建铨. 太阳能跟踪控制系统的设计与应用[J]. 机电工程技术, 2022, 51(11): 231-234.
ZHUANG J Q.Design and application of solar tracking control system[J]. Mechanical & electrical engineering technology, 2022, 51(11): 231-234.
[3] 方建钢. 太阳能跟踪控制系统的研究与设计[D]. 武汉: 武汉理工大学, 2011.
FANG J G.Research and design of solar tracking control system[D]. Wuhan: Wuhan University of Technology, 2011.
[4] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[5] 宿剑锋. 太阳能自动跟踪控制系统的设计与研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
SU J F.Research and design of solar automatic tracking control system[D]. Harbin: Harbin Engineering University, 2011.
[6] 丁伟. 太阳能发电自动跟踪控制系统研究与实现[D]. 南京: 南京航空航天大学, 2010.
DING W.Automatic tracking control system of solar power generation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
[7] YAMAUCHI I, OHKATA K, 修一宮. Shape memory and superelastic alloys: technologies and applications[M]. Woodhead: Woodhead Publishing 2011, 3-14.
[8] 冯鑫晟, 韩青非, 邱镓辉, 等. 基于形状记忆合金的仿壁虎柔性脚掌设计[J]. 南京航空航天大学学报, 2023, 55(3): 427-436.
FENG X C, HAN Q F, QIU J H, et al.Design of gecko-like flexible feet based on shape memory alloy[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(3): 427-436.
[9] 冯凯旋. MSMA自感知执行器信号处理与振动控制的研究[D]. 沈阳: 沈阳理工大学, 2020.
FENG K X.Study on signal processing and vibration control of MSMA self-sensing actuator[D]. Shenyang: Shenyang Ligong University, 2020.
[10] 吴继托. 基于电阻和循环神经网络的自感知SMA丝执行器研究[D]. 长春: 吉林大学, 2022.
WU J T.Research on self-sensing SMA wire actuator based on resistance and recurrent neural network[D]. Changchun: Jilin University, 2022.
[11] DUTTA S M, GHORBEL F H.Differential hysteresis modeling of a shape memory alloy wire actuator[J]. IEEE/ASME transactions on mechatronics, 2005, 10(2): 189-197.
[12] GUAN J H, PEI Y C, WU J T.A driving strategy of shape memory alloy wires with electric resistance modeled by logistic function for power consumption reduction[J]. Mechanical systems and signal processing, 2021, 160: 107839.
[13] 魏艳波. 基于一次逆、二次正压电效应自感知执行器的研究[D]. 哈尔滨: 黑龙江大学, 2014.
WEI Y B.Research on self-sensing actuator based on primary inverse and secondary positive piezoelectric effect[D]. Harbin: Heilongjiang University, 2014.
[14] LASCHI C, MAZZOLAI B, MATTOLI V, et al.Design of a biomimetic robotic octopus arm[J]. Bioinspiration & biomimetics, 2009, 4(1): 015006.
[15] CALISTI M, ARIENTI A, ELENA GIANNACCINI M, et al.Study and fabrication of bioinspired Octopus arm mockups tested on a multipurpose platform[C]//EEE/RAS-EMBS International Conference On Biomedical Robotics and Biomechatronics(BioRob). Tokyo, Japan, 2010: 461-466.
[16] MARGHERI L, MAZZOLAI B, PONTE G, et al.Methods and tools for the anatomical study and experimental in vivo measurement of the Octopus vulgaris arm for biomimetic design[J]. EEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics(BioRob), Tokyo, Japan, 2010: 467-472.
[17] CIANCHETTI M, ARIENTI A, FOLLADOR M, et al.Design concept and validation of a robotic arm inspired by the octopus[J]. Materials science and engineering: C, 2011, 31(6): 1230-1239.
[18] GUGLIELMINO E, TSAGARAKIS N, CALDWELL D G.An octopus anatomy-inspired robotic arm[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China, 2010: 3091-6.
[19] 兰博文. 仿章鱼腕柔性机械臂设计与研究[D]. 南京: 南京航空航天大学, 2018.
LAN B W.Design and research on an octopus-like flexible manipulator[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[20] 谷凡, 张玲, 王伟, 等. 形状记忆合金管道连接件综述[J]. 建筑与预算, 2017(12): 30-37.
GU F, ZHANG L, WANG W, et al.Summary of shape memory alloy pipe connectors[J]. Construction and budget, 2017(12): 30-37.
[21] LIU D Z, LIU W X, GONG F Y. Engineering application of Fe-based shape memory alloy on connecting pipe line[J]. Journal de physique IV, 1995, 5(C8): C8-1241-C8-1246.
[22] LAN C C, FAN C H.Investigation on pretensioned shape memory alloy actuators for force and displacement self-sensing[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, China, 2010: 3043-3048.
[23] HARTL D J, LAGOUDAS D C.Aerospace applications of shape memory alloys[J]. Proceedings of the institution of mechanical engineers, part G: journal of aerospace engineering, 2007, 221(4): 535-552.
[24] MCDONALD SCHETKY L.Shape memory alloy applications in space systems[J]. Materials & design, 1991, 12(1): 29-32.
[25] VAN HUMBEECK J. Non-medical applications of shape memory alloys[J]. Materials science and engineering: A, 1999, 273-275: 134-148.
[26] 王扬威, 兰博文, 刘凯, 等. 形状记忆合金丝驱动的柔性机械臂建模与实验[J]. 浙江大学学报(工学版), 2018, 52(4): 628-634, 673.
WANG Y W, LAN B W, LIU K, et al.Modeling and experiment of flexible manipulator actuated by shape memory alloy wire[J]. Journal of Zhejiang University (engineering science), 2018, 52(4): 628-634, 673.
[27] BRINSON L C.One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J]. Journal of intelligent material systems and structures, 1993, 4(2): 229-242.
[28] TANAKA K, KOBAYASHI S, SATO Y.Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys[J]. International journal of plasticity, 1986, 2(1): 59-72.
[29] 葛福国. 基于NiTi形状记忆合金的康复机械手及其电热驱动特性研究[D]. 成都: 电子科技大学, 2022.
GE F G.Research on rehabilitation manipulator and the electrothermal driving characteristics based on NiTi shape memory alloy[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[30] 周博, 王志勇, 薛世峰. 形状记忆合金超弹性螺旋弹簧的力学模型[J]. 机械工程学报, 2019, 55(8): 56-64.
ZHOU B, WANG Z Y, XUE S F.Mechanical model for super-elastic helical spring of shape memory alloy[J]. Journal of mechanical engineering, 2019, 55(8): 56-64.
[31] SOFLA A Y N, ELZEY D M, WADLEY H N G. Two-way antagonistic shape actuation based on the one-way shape memory effect[J]. Journal of intelligent material systems and structures, 2008, 19(9): 1017-1027.
[32] CARBALLO M, PU Z J, WU K H.Variation of electrical resistance and the elastic modulus of shape memory alloys under different loading and temperature conditions[J]. Journal of intelligent material systems and structures, 1995, 6(4): 557-565.
[33] SONG G B, MA N, LEE H J.Position estimation and control of SMA actuators based on electrical resistance measurement[J]. Smart structures and systems, 2007, 3(2): 189-200.
[34] 沈丹平. 基于NiTi形状记忆合金的仿生灵巧手设计研究[D]. 成都: 电子科技大学, 2019.
SHEN D P.Research on bionic dexterous finger based on NiTi shape memory alloy[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[35] 王仁明, 张铭锐, 鲍刚, 等. 基于拟合反演滑模方法的光伏系统MPPT控制[J]. 太阳能学报, 2023, 44(8): 224-231.
WANG R M, ZHANG M R, BAO G, et al.MPPT control of photovoltaic system based on fitting backstepping sliding mode method[J]. Acta energiae solaris sinica, 2023, 44(8): 224-231.
[36] 廖东进, 方晓敏, 黄志平. 光伏组件辐照度增益研究[J]. 太阳能学报, 2022, 43(5): 113-118.
LIAO D J,FANG X M, HUANG Z P.Research on irradiance gain of photovoltaic modules[J]. Acta energiae solaris sinica, 2022, 43(5): 113-118.

基金

国家自然科学基金(52176205); “叶企孙”科学基金(U2241268); 陕西省创新能力支撑计划(2023-CX-TD-19)

PDF(7321 KB)

Accesses

Citation

Detail

段落导航
相关文章

/