Semi-Z源逆变器的现有调制策略存在开关电压应力大且难以实现闭环控制的固有不足。针对以上不足,提出一种低电压应力的Semi-Z源逆变器调制策略。通过建立稳态电路模型,分析Semi-Z源电压增益和器件应力特性,对占空比进行平均化处理,进而减小开关器件电压应力。此外,针对Semi-Z源逆变器在重载及高输出交流频率的应用环境中,依然存在无源元件需求过大的问题,特别设计并提出一套高效的无源元件参数优化方案。最后,根据所提出的调制策略,设计搭建200 W试验样机,验证所提的调制策略和参数设计方案的正确性和综合性能优势。
Abstract
The Semi-Z source inverter uses fewer switching components and achieves single-stage energy conversion, making it have good application prospects. The existing modulation strategy of Semi-Z source inverters has inherent shortcomings such as high switching voltage stress and difficulty in achieving closed-loop control. In response to the above shortcomings, this article proposes a low voltage stress Semi-Z source inverter modulation strategy. By establishing a steady-state circuit model, the voltage gain and device stress characteristics of the Semi-Z source are analyzed, and the duty cycle is averaged to reduce the voltage stress of the switching device. In addition, to address the issue of large demand for passive components in Semi-Z source inverters under heavy loads and high output AC frequencies. This article provides a set of parameter optimization design methods for passive components. Finally, a 200 W experimental prototype was built based on the modulation strategy proposed in this article, verifying the correctness and comprehensive advantages of the modulation strategy and parameter design scheme proposed in this article.
关键词
逆变器 /
脉宽调制 /
电路分析 /
电压应力 /
线性控制
Key words
inverter /
pulse width modulation /
circuit analysis /
voltage stress /
linear control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张迪, 王鹏磊, 王立乔, 等. 一种可抑制共模电流的三相Sepic电流源逆变器[J]. 太阳能学报, 2023, 44(8): 266-274.
ZHANG D, WANG P L, WANG L Q, et al.Three-phase sepic-type current source inverter that can suppress common mode current[J]. Acta energiae solaris sinica, 2023, 44(8): 266-274.
[2] 王要强, 李娜, 赵朝阳, 等. 一种新型多电平逆变器及其模块化分析[J]. 电工技术学报, 2022, 37(18): 4676-4687.
WANG Y Q, LI N, ZHAO Z Y, et al.A new type of multilevel inverter and its modular analysis[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4676-4687.
[3] 张民, 李海滨, 郝杨阳, 等. 一种混合型阻抗源逆变器的研究[J]. 太阳能学报, 2021, 42(11): 27-32.
ZHANG M, LI H B, HAO Y Y, et al.Research on a hybrid impedance source inverter[J]. Acta energiae solaris sinica, 2021, 42(11): 27-32.
[4] 刘贇, 丁新平, 赵德林, 等. 新型倍压-Z源逆变器[J]. 太阳能学报, 2021, 42(8): 133-139.
LIU Y, DING X P, ZHAO D L, et al.Novel Z-source inverter with voltage multiplier unit[J]. Acta energiae solaris sinica, 2021, 42(8): 133-139.
[5] 朱建军, 孙阳, 常鹏, 等. 基于等效惯量辨识的光伏调频控制优化策略[J]. 西安工程大学学报, 2022, 36(5): 111-118.
ZHU J J, SUN Y, CHANG P, et al.Photovoltaic frequency regulation control optimization strategy based on equivalent inertia identification[J]. Journal of Xi’an polytechnic university, 2022, 36(5): 111-118.
[6] KIM H, SHIN K G.DESA: dependable, efficient, scalable architecture for management of large-scale batteries[J]. IEEE transactions on industrial informatics, 2012, 8(2): 406-417.
[7] LI Z Z, ZHU M, HOU C C, et al.Impedance modelling mechanisms and stability issues of single phase inverter with SISO structure and frequency coupling effect[J]. IEEE transactions on energy conversion, 2022, 37(1): 573-584.
[8] YANG Y H, ZHOU K L, BLAABJERG F.Current harmonics from single-phase grid-connected inverters—examination and suppression[J]. IEEE journal of emerging and selected topics in power electronics, 2016, 4(1): 221-233.
[9] GUO X Q, HE R, JIAN J M, et al.Leakage current elimination of four-leg inverter for transformerless three-phase PV systems[J]. IEEE transactions on power electronics, 2016, 31(3): 1841-1846.
[10] LI X, SUN Y, JIANG L, et al.Common-mode circuit analysis of current-source photovoltaic inverter for leakage current and EMI[J]. IEEE transactions on power electronics, 2023, 38(6): 7156-7165.
[11] AKAGI H, TAMURA S.A passive EMI filter for eliminating both bearing current and ground leakage current from an inverter-driven motor[J]. IEEE transactions on power electronics, 2006, 21(5): 1459-1469.
[12] CHEN Y N, XU D H, XI J B, et al.A ZVS grid-connected full-bridge inverter with a novel ZVS SPWM scheme[J]. IEEE transactions on power electronics, 2016, 31(5): 3626-3638.
[13] BABAEI E, SHOKATI ASL E.High-voltage gain half-bridge Z-source inverter with low-voltage stress on capacitors[J]. IEEE transactions on industrial electronics, 2017, 64(1): 191-197.
[14] ALI REZAEI M, LEE K J, HUANG A Q.A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications[J]. IEEE transactions on power electronics, 2016, 31(1): 318-327.
[15] LEE S S, SIWAKOTI Y P, BARZEGARKHOO R, et al.A novel common-ground-type nine-level dynamic boost inverter[J]. IEEE journal of emerging and selected topics in power electronics, 2022, 10(4): 4435-4442.
[16] LEE S S, YANG Y H, SIWAKOTI Y P.A novel single-stage five-level common-ground-boost-type active neutral-point-clamped (5L-CGBT-ANPC) inverter[J]. IEEE transactions on power electronics, 2021, 36(6): 6192-6196.
[17] LOH P C, LI D, BLAABJERG F.Γ-Z-Source Inverters[J]. IEEE transactions on power electronics, 2013, 28(11): 4880-4884.
[18] FANG Z P.Z-source inverter[J]. IEEE transactions on industry applications, 2003, 39(2): 504-510.
[19] ZHANG G D, WU Z Y, YU S S, et al.Four novel embedded Z-source DC-DC converters[J]. IEEE transactions on power electronics, 2022, 37(1): 607-616.
[20] GUO W Y, LI D F, CAI F Y, et al.Z-source-converter-based power conditioning system for superconducting magnetic energy storage system[J]. IEEE transactions on power electronics, 2019, 34(8): 7863-7877.
[21] GHAHDERIJANI M M, DEHKORDI B M.Comprehensive robust and fast control of $Z$-source-inverter-based interior permanent magnet synchronous motor drive system[J]. IEEE transactions on industrial electronics, 2021, 68(12): 11783-11793.
[22] TANG Y, XIE S J, ZHANG C H.Single-phase Z-source inverter[J]. IEEE transactions on power electronics, 2011, 26(12): 3869-3873.
[23] CAO D, JIANG S, YU X H, et al.Low-cost semi-Z-source inverter for single-phase photovoltaic systems[J]. IEEE transactions on power electronics, 2011, 26(12): 3514-3523.
[24] AHMED T, MEKHILEF S.Semi-Z-source inverter topology for grid-connected photovoltaic system[J]. IET power electronics, 2015, 8(1): 63-75.
[25] REMYA V K, PARTHIBAN P, ANSAL V, et al.Single-phase DVR with semi-Z-source inverter for power distribution network[J]. Arabian journal for science and engineering, 2018, 43(6): 3135-3149.
基金
国家自然科学基金(52177193); 陕西省重点研发计划(2022GY-182); 西安市科技计划项目(22GXFW0078)