对开阔无遮挡环境下2×13阵列进行不同架高高度的三维仿真,分析不同架高高度对阵列冷岛效应的影响。结果表明,架高高度的增大对冷岛效应的削弱体现在提高阵列机组进风温度及其均匀度,同时也减弱阵列各处的冷风回流。当x方向无风时,阵列每提高0.5 m,机组进风均温提升0.14 ~0.18 K,机组回流率均值平均减小0.018。x方向风速为0.5 m/s时,阵列每提高0.5 m,每排机组进风均温最大提高0.52 K,进风均温方差平均减小38%,进风温度均匀性大幅提高;回流率均值差异随架高高度递进而减小,最小为0.21,最大0.42。x方向风速为2.0 m/s时,阵列每增高0.5 m,进风均温平均提高0.16 K,架高2.5 m阵列较无架高阵列进风均温平均提0.75 K,最大提高1.1 K。
Abstract
This study investigates the influence of different array heights on the cold island effect in unobstructed open environments through three-dimensional simulations of a 2×13 array. The results demonstrate that increasing the array height effectively mitigates the cold island effect by enhancing the inlet air temperature and its uniformity while reducing cold air reflux throughout the array. In windless conditions, each 0.5 m increase in array height leads to an average elevation of 0.14-0.18 K in the unit’s average inlet air temperature, coupled with an average reduction in the return rate by 0.018. At a wind speed of 0.5 m/s in the x direction, augmenting the array height by 0.5 m yields a maximum increment of 0.52 K in the average inlet air temperature across each row, accompanied by a 38% average decrease in the variance of the inlet air temperature and significant enhancement in temperature uniformity. The mean difference in reflux rates diminishes with increasing height, ranging from 0.21 to 0.42. Moreover, at a wind speed of 2 m/s in the xdirection, each 0.5 m increase in array height corresponds to an average rise of 0.16 K in the average inlet air temperature. Notably, for an array height of 2.5 m, the average inlet air temperature increases by 0.75 K on average, with a maximum surge of 1.1 K compared to an array without additional height.
关键词
空气源热泵 /
数值模拟 /
环境温度 /
冷岛效应 /
寒冷地区
Key words
air source heat pump /
numerical simulation /
ambient temperature /
cold island effect /
cold area
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告-2023-城市能源系统专题[M]. 北京: 中国建筑工业出版社, 2023: 20-22.
Tsinghua University Building Energy Conservation Research Center. Annual development research report of building energy efficiency in China-2023-special topics of urban energy system[M]. Beijing: China Architecture & Building Press, 2023: 20-22.
[2] 李露露, 尹应德, 刘世杰, 等. 供暖水温对低温空气源热泵制热性能影响的实验研究[J]. 太阳能学报, 2023, 44(4): 377-383.
LI L L, YIN Y D, LIU S J, et al.Experimental study on effect of heating water temperature on heating performance of low-temperature air source heat pump[J]. Acta energiae solaris sinica, 2023, 44(4): 377-383.
[3] 张志刚, 刘莹, 姚万祥. 空气源热泵热水器在寒冷地区冬季的能效分析[J]. 太阳能学报, 2023, 44(1): 543-550.
ZHANG Z G, LIU Y, YAO W X.Energy efficiency analysys of air energy water heater in cold area in winter[J]. Acta energiae solaris sinica, 2023, 44(1): 543-550.
[4] 陈健勇, 李浩, 陈颖, 等. 空气源热泵空调技术应用现状及发展前景[J]. 华电技术, 2021, 43(11): 25-39.
CHEN J Y, LI H, CHEN Y, et al.Application status and perspectives of air-source heat pump air conditioning technology[J]. Huadian technology, 2021, 43(11): 25-39.
[5] 王沣浩, 马龙霞, 王志华, 等. 空气源热泵除霜控制方法研究现状及展望[J]. 制冷学报, 2021, 42(5): 27-35.
WANG F H, MA L X, WANG Z H, et al.Research status and prospect on defrosting control method of air source heat pump[J]. Journal of refrigeration, 2021, 42(5): 27-35.
[6] 赵洪运, 宇世鹏, 邱国栋, 等. 可实现“无霜效果” 的蓄热型空气源热泵系统实验研究[J]. 太阳能学报, 2021, 42(4): 61-67.
ZHAO H Y, YU S P, QIU G D, et al.Experimental study on heat storage air source heat pump system with “no frost effect”[J]. Acta energiae solaris sinica, 2021, 42(4): 61-67.
[7] ZHANG D R, LI S G, CHEN Q J, et al.Performance evaluation of fin-and-tube heat exchangers in an outdoor unit considering air flow mal-distribution[J]. International journal of refrigeration, 2022, 144: 14-25.
[8] 郭郑道, 许强强, 陈锦鹏, 等. 空气源热泵冷岛效应形成机理及实验验证[J]. 太阳能学报, 2022, 43(10): 7-14.
GUO Z D, XU Q Q, CHEN J P, et al.Formation mechanism and experimental verification of cold island effect of air source heat pumps[J]. Acta energiae solaris sinica, 2022, 43(10): 7-14.
[9] 刘黔奇. 空气源热泵群工作环境模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LIU Q Q.Simulation study on working environment of air source heat pump group[D]. Harbin: Harbin Institute of Technology, 2017.
[10] 谢鑫, 高嵩, 刘萌, 等.计及楼宇供热特性的空气源热泵负荷双层优化调度控制策略[J/OL]. 华北电力大学学报(自然科学版): 1-9[2023-09-20].
XIE X, GAO S, LIU M, et al.Two-layer optimal scheduling control strategy for air source heat pump load considering building heating characteristics [J/OL]. Journal of North China Electric Power University (Natural Science): 1-9[2023-09-20].
[11] 周港. 空气源热泵机组群周围热环境研究[D]. 济南: 山东建筑大学, 2022.
ZHOU G.Study on thermal environment around air source heat pumpunit group[D]. Jinan: Shandong Jianzhu University, 2022.
[12] 谭庆澎, 刘金平, 许雄文, 等. 低环温空气源热泵外流场模拟及换热性能影响分析[J]. 制冷与空调(四川), 2023, 37(3): 361-368.
TAN Q P, LIU J P, XU X W, et al.Simulation of external flow field and analysis of heat transfer performance of low ambient temperature air source heat pump[J]. Refrigeration & air conditioning, 2023, 37(3): 361-368.
[13] 魏晓雯, 姜坪. 水平列阵布置的多联机空调室外机热环境模拟分析[J]. 浙江理工大学学报(自然科学版), 2021, 46(1):149-156.
WEI X W, JIANG P.Simulation and analysis of thermal environment of VRF air-conditioning outdoor units with horizontal array arrangement[J]. Journal of Zhejiang Sci-tech University (natural sciences edition), 2021, 46(1): 149-156.
[14] SUN Y, XU H X, LIU Y, et al.Technical measures for improving the cold island effect of air source heat pump unit array[J]. Journal of computational methods in sciences and engineering, 2022, 22(6): 2387-2411.
[15] 王梅荣. 冷岛效应及环境风场对空气源热泵阵列运行性能影响研究[D]. 济南: 山东大学, 2019.
WANG M R.Study on the influence of cold island effect andambient wind field on the performance of air source heat pump array[D]. Ji’nan: Shandong University, 2019.
[16] 雷艳杰, 陈奎. 空气源热泵集群式布置的采暖系统中冷岛效应的产生机理及控制措施[J]. 节能与环保, 2021(5): 51-54.
LEI Y J, CHEN K.The generating mechanism and controlling measures of cold island effect in clustered air-source heat pump heating system[J]. Energy conservation & environmental protection, 2021(5): 51-54.
[17] 马原. 改善空气源热泵机组阵列冷岛效应的技术措施研究[D]. 张家口: 河北建筑工程学院, 2021.
MA Y.Study of technical measures to improve the cold island effect of an array of air source heat pump units[D]. Zhangjiakou:Hebei University of Architecture and Engineering, 2021.
基金
国家科技重大专项(2017-V-0012-0064)