大气边界层中风力机载荷及功率特性的实验研究

郭兴铎, 李银然, 李仁年, 魏魁, 马清东

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 9-16.

PDF(3191 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3191 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 9-16. DOI: 10.19912/j.0254-0096.tynxb.2023-1611

大气边界层中风力机载荷及功率特性的实验研究

  • 郭兴铎1, 李银然1,2, 李仁年1,2, 魏魁1, 马清东1
作者信息 +

EXPERIMENTAL STUDY OF WIND TURBINE LOAD AND POWER CHARACTERISTICS IN ATMOSPHERIC BOUNDARY LAYER

  • Guo Xingduo1, Li Yinran1,2, Li Rennian1,2, Wei Kui1, Ma Qingdong1
Author information +
文章历史 +

摘要

该文在风洞中构建出两种平均风切变指数和湍流强度的大气边界层风场,并开展均匀来流和大气边界层条件下风力机载荷及功率特性的实验研究。结果表明:风力机偏航运行时,机组轴向载荷减小,疲劳载荷增大,随着偏航角增大,风轮功率系数减小,最优叶尖速比降低。在大气边界层来流条件下,风轮平均倾覆力矩系数和功率系数较均匀来流增大,机组疲劳载荷、极端载荷,及输出功率的非定常特性显著增加,且功率系数的概率分布更符合高斯分布。此外,风轮功率系数频谱与大气边界层来流速度频谱存在一定程度的关联性,在耦合区间出现Φp/Φu~f -2的幂率关系。而功率系数频谱在超过约3倍转频后基本维持水平趋势,表明湍流来流与输出功率的调制作用在该频率处开始解耦,解耦后风力机功率输出受湍流来流的影响较弱,其功率谱响应主要取决于风轮的自身特性。

Abstract

In this study, two atmospheric boundary layer wind fields characterized by mean wind shear index and turbulence intensity were generated in wind tunnel. Subsequently, the load and power characteristics of wind turbines were experimentally investigated under uniform incoming flow and generated atmospheric boundary layer conditions. The results show that the axial load of the wind turbine decreases, while the fatigue load increases when it is yawing. Additionally, the turbine power coefficient and optimal tip velocity ratio both decrease as the yaw angle increases. Under the inflow condition of the atmospheric boundary layer, both the mean bending moment coefficient and power coefficient of the wind turbine exhibit an increase compared to the uniform inflow condition, The fatigue load, extreme load and unsteady characteristics of output power increase significantly, and the probability distribution of power coefficient aligns more closely with a Gaussian distribution. Additionally, the wind turbine power coefficient spectrum exhibits a certain level of correlation with the atmospheric boundary layer incoming velocity spectrum, and within the coupling interval, there exists a power rate relationship of Φp/Φu~f -2. When the frequency exceeds approximately three times the rotation frequency, the power coefficient spectral curve exhibits a predominantly horizontal trend, indicating the decoupling of modulation effects between turbulent incoming flow and power output. Following this decoupling, wind turbine power output is minimally influenced by turbulent incoming flow, with its spectral response primarily dependent on wind turbine characteristics.

关键词

水平轴风力机 / 大气边界层 / 湍流 / 功率 / 载荷 / 风洞实验

Key words

horizontal axis wind turbines / atmospheric boundary layer / turbulence / power / load / wind tunnel experiment

引用本文

导出引用
郭兴铎, 李银然, 李仁年, 魏魁, 马清东. 大气边界层中风力机载荷及功率特性的实验研究[J]. 太阳能学报. 2025, 46(1): 9-16 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1611
Guo Xingduo, Li Yinran, Li Rennian, Wei Kui, Ma Qingdong. EXPERIMENTAL STUDY OF WIND TURBINE LOAD AND POWER CHARACTERISTICS IN ATMOSPHERIC BOUNDARY LAYER[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 9-16 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1611
中图分类号: TK89   

参考文献

[1] SEZER-UZOL N, UZOL O.Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor[J]. Wind energy, 2013, 16(1): 1-17.
[2] ROBERTSON A, SETHURAMAN L, JONKMAN J M. Assessment of wind parameter sensitivity on extreme and fatigue wind turbine loads[C]//2018 Wind Energy Symposium. Kissimmee, Florida, USA, 2018: AIAA2018-1728.
[3] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464): eaau2027.
[4] ZHANG W, MARKFORT C D, PORTÉ-AGEL F.Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer[J]. Experiments in fluids, 2012, 52(5): 1219-1235.
[5] TIAN W, OZBAY A, HU H.A wind tunnel study of wind loads on a model wind turbine in atmospheric boundary layer winds[J]. Journal of fluids and structures, 2019, 85: 17-26.
[6] 李德顺, 郭涛, 李伟, 等. 中性大气边界层中风力机的湍流演化及叶根载荷分析[J]. 科学通报, 2019, 64(17): 1832-1843.
LI D S, GUO T, LI W, et al.Evolution of turbulence in a wind turbine flow field with a neutral atmospheric boundary layer and an analysis of the blade root load[J]. Chinese science bulletin, 2019, 64(17): 1832-1843.
[7] DIMITROV N, NATARAJAN A, MANN J.Effects of normal and extreme turbulence spectral parameters on wind turbine loads[J]. Renewable energy, 2017, 101: 1180-1193.
[8] DAI J C, YANG X, HU W, et al.Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149: 684-696.
[9] MILAN P, WÄCHTER M, PEINKE J. Turbulent character of wind energy[J]. Physical review letters, 2013, 110(13): 138701.
[10] EGGERS A J Jr, DIGUMARTHI R, CHANEY K. Wind shear and turbulence effects on rotor fatigue and loads control[J]. Journal of solar energy engineering, 2003, 125(4): 402-409.
[11] BARTHELMIE R J, CHURCHFIELD M J, MORIARTY P J, et al.The role of atmospheric stability/turbulence on wakes at the Egmond aan Zee offshore wind farm[J]. Journal of physics: conference series, 2015, 625: 012002.
[12] DÖRENKÄMPER M, TAMBKE J, STEINFELD G, et al. Atmospheric impacts on power curves of multi-megawatt offshore wind turbines[J]. Journal of physics: conference series, 2014, 555: 012029.
[13] NANDI T N, HERRIG A, BRASSEUR J G.Non-steady wind turbine response to daytime atmospheric turbulence[J]. Philosophical transactions of the Royal Society A, Mathematical, physical, and engineering sciences, 2017, 375(2091): 20160103.
[14] GAO L Y, YANG S, ABRAHAM A, et al.Effects of inflow turbulence on structural response of wind turbine blades[J]. Journal of wind engineering and industrial aerodynamics, 2020, 199: 104137.
[15] CHAMORRO L P, LEE S J, OLSEN D, et al.Turbulence effects on a full-scale 2.5 MW horizontal-axis wind turbine under neutrally stratified conditions[J]. Wind energy, 2015, 18(2): 339-349.
[16] 杨从新, 王印, 李寿图, 等. 基于实验分析入流湍流积分尺度对水平轴风力机功率波动的影响[J]. 太阳能学报, 2021, 42(8): 408-413.
YANG C X, WANG Y, LI S T, et al.Experimental study on influence of inflow turbulence integral scale on power fuctuation of horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2021, 42(8): 408-413.
[17] 张旭耀. 复杂来流条件下水平轴风力机流场特性与气动载荷研究[D]. 兰州: 兰州理工大学, 2019.
ZHANG X Y.Study on flow field characteristics and aerodynamic loads of horizontal axis wind turbine under complicated inflow conditions[D]. Lanzhou: Lanzhou University of Technology, 2019.
[18] 李银然, 赵丽, 李德顺, 等. 偏航工况下叶片翼型动态特性研究[J]. 太阳能学报, 2022, 43(7): 326-333.
LI Y R, ZHAO L, LI D S, et al.Study on dynamic characteristics of blade airfoil under yaw condition[J]. Acta energiae solaris sinica, 2022, 43(7): 326-333.

基金

甘肃省科技计划(22JR5RA231); 甘肃省高等学校产业支撑计划(2022CYZC-27); 兰州理工大学优秀博士学位论文培育计划

PDF(3191 KB)

Accesses

Citation

Detail

段落导航
相关文章

/