基于模糊自整定串级PID的空冷型PEMFC温度控制系统的设计

常天奇, 田亮, 冯海, 刘琪, 黄青山, 张典

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 156-164.

PDF(2031 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2031 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 156-164. DOI: 10.19912/j.0254-0096.tynxb.2023-1620

基于模糊自整定串级PID的空冷型PEMFC温度控制系统的设计

  • 常天奇1,2, 田亮2, 冯海2, 刘琪1,2, 黄青山2, 张典1
作者信息 +

DESIGN OF AIR-COOLED PEMFC TEMPERATURE CONTROL SYSTEM BASED ON FUZZY SELF-TUNING CASCADE PID

  • Chang Tianqi1,2, Tian Liang2, Feng Hai2, Liu Qi1,2, Huang Qingshan2, Zhang Dian1
Author information +
文章历史 +

摘要

针对空冷型质子交换膜燃料电池(PEMFC)电堆温度控制问题,设计一种模糊自整定串级PID(FSC-PID)温度控制器,并基于Matlab/Simulink建立空冷型PEMFC电堆热模型,对所设计的FSC-PID控制器进行仿真和性能对比分析。仿真测试结果表明,FSC-PID温度控制器在控制精度、响应速度和稳定性等方面均优于常规串级PID控制器。为验证FSC-PID控制器的实际应用效果,基于STM32平台并使用300 W电堆进行FSC-PID温度控制实验。实验结果表明,FSC-PID能有效控制电堆温度,保证电堆的性能和寿命,进一步验证所建立热模型的准确性和可靠性。

Abstract

A fuzzy self-tuning cascade PID (FSC-PID) controller was designed and a thermodynamic model of the air-cooled PEMFC stack was established based on Matlab/Simulink to deal with the temperature control problem of air-cooled proton exchange membrane fuel cell (PEMFC) stacks. The simulation and performance comparison of the FSC-PID controller were carried out, and the experimental results show that the fuzzy self-tuning cascade PID controller has better control accuracy, response speed, and stability than the conventional cascade PID controller. Additionally, a 300 W stack was employed for FSC-PID temperature control experiments based on the STM32 platform to validate the practical application effect of the FSC-PID controller, and the experimental results show that the FSC-PID can effectively control the stack temperature, ensuring the performance and lifetime of the stack and validating the accuracy and reliability of the established thermodynamic model.

关键词

质子交换膜燃料电池 / 温度控制 / 仿真 / 模糊逻辑 / PID控制

Key words

proton exchange membrane fuel cells / temperature control / simulation / fuzzy logic / PID control

引用本文

导出引用
常天奇, 田亮, 冯海, 刘琪, 黄青山, 张典. 基于模糊自整定串级PID的空冷型PEMFC温度控制系统的设计[J]. 太阳能学报. 2025, 46(2): 156-164 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1620
Chang Tianqi, Tian Liang, Feng Hai, Liu Qi, Huang Qingshan, Zhang Dian. DESIGN OF AIR-COOLED PEMFC TEMPERATURE CONTROL SYSTEM BASED ON FUZZY SELF-TUNING CASCADE PID[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 156-164 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1620
中图分类号: TM911.4   

参考文献

[1] 谢雨岑, 邹见效, 彭超. 基于变论域模糊增量理论的质子交换膜燃料电池温度控制[J]. 控制理论与应用, 2019, 36(3): 428-435.
XIE Y C, ZOU J X, PENG C.Temperature control of PEMFC system based on variable universe fuzzy incremental theory[J]. Control theory & applications, 2019, 36(3): 428-435.
[2] CHEN X, FANG Y, LIU Q X, et al.Temperature and voltage dynamic control of PEMFC stack using MPC method[J]. Energy reports, 2022, 8: 798-808.
[3] 卫东, 郑东, 郑恩辉. 空冷型质子交换膜燃料电池堆温湿度特性自适应模糊建模与输出控制[J]. 中国电机工程学报, 2010, 30(23): 114-120.
WEI D, ZHENG D, ZHENG E H.Temperature-humidity characteristics modeling and output control based on adaptive fuzzy method for proton exchange membrane fuel cell stack[J]. Proceedings of the CSEE, 2010, 30(23): 114-120.
[4] LI D Z, LI C, GAO Z Q, et al.On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells[J]. Journal of power sources, 2015, 283: 452-463.
[5] 侯荣福, 杨君, 于蓬, 等. 基于模糊自抗扰的质子交换膜燃料电池温度控制[J]. 山东工业技术, 2022(6): 16-23.
HOU R F, YANG J, YU P, et al.Temperature control of proton exchange membrane fuel cell based on fuzzy active disturbance rejection[J]. Journal of Shandong industrial technology, 2022(6): 16-23.
[6] 仇俊政, 赵红, 牟亮, 等. 基于粒子群PID的质子交换膜燃料电池温度控制[J]. 制造业自动化, 2022, 44(8): 98-101.
QIU J Z, ZHAO H, MOU L, et al.Temperature control of proton exchange membrane fuel cell based on particle swarm optimization PID[J]. Manufacturing automation, 2022, 44(8): 98-101.
[7] 裴尧旺, 陈凤祥, 胡哲, 等. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
PEI Y W, CHEN F X, HU Z, et al.Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control[J]. Journal of Jilin University (engineering and technology edition), 2022, 52(9): 2014-2024.
[8] ATAK N N, DOGAN B, YESILYURT M K.Investigation of the performance parameters for a PEMFC by thermodynamic analyses: effects of operating temperature and pressure[J]. Energy, 2023, 282: 128907.
[9] 朱星光, 贾秋红, 陈唐龙, 等. 质子交换膜燃料电池阴极风扇系统实验研究[J]. 中国电机工程学报, 2013, 33(11): 47-53.
ZHU X G, JIA Q H, CHEN T L, et al.Experimental study on characteristics of cathode fan systems of proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2013, 33(11): 47-53.
[10] XIE M, CHU T K, WANG T T, et al.Preparation, performance and challenges of catalyst layer for proton exchange membrane fuel cell[J]. Membranes, 2021, 11(11): 879.
[11] CHUGH S, CHAUDHARI C, SONKAR K, et al.Experimental and modelling studies of low temperature PEMFC performance[J]. International journal of hydrogen energy, 2020, 45(15): 8866-8874.
[12] YU X X, CHANG H W, ZHAO J J, et al.Effects of anode flow channel on performance of air-cooled proton exchange membrane fuel cell[J]. Energy reports, 2022, 8: 4443-4452.
[13] OLBRICH W, KADYK T, SAUTER U, et al.Modeling of wetting phenomena in cathode catalyst layers for PEM fuel cells[J]. Electrochimica acta, 2022, 431: 140850.
[14] XING L, XIANG W T, ZHU R Q, et al.Modeling and thermal management of proton exchange membrane fuel cell for fuel cell/battery hybrid automotive vehicle[J]. International journal of hydrogen energy, 2022, 47(3): 1888-1900.
[15] CHANG H W, CAI F Y, YU X X, et al.Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates[J]. Energy, 2023, 263: 125724.
[16] JIAO K, NI M.Challenges and opportunities in modelling of proton exchange membrane fuel cells (PEMFC)[J]. International journal of energy research, 2017, 41(13): 1793-1797.
[17] DRIANKOV D, HELLENDOORN H, REINFRANK M.An introduction to fuzzy control[M]. Berlin: Heidelberg Springer Berlin Heidelberg, 1993.
[18] TANG X W, ZHANG Y J, XU S C.Experimental study of PEM fuel cell temperature characteristic and corresponding automated optimal temperature calibration model[J]. Energy, 2023, 283: 128456.
[19] FERRARA A, HÜTTER M, HAMETNER C. Adaptive energy management strategy to avoid battery temperature peaks in fuel cell electric trucks[J]. IFAC-PapersOnLine, 2022, 55(24): 311-316.
[20] 彭赟, 欧阳家俊, 阙海丹, 等. 考虑环境温湿度的空冷PEMFC最佳工作温度研究与控制[J]. 太阳能学报, 2016, 37(6): 1423-1430.
PENG Y, OUYANG J J, QUE H D, et al.Study and control of optimal operating temperature in air-cooled PEMFC based on certain ambient temperature and humidity[J]. Acta energiae solaris sinica, 2016, 37(6): 1423-1430.
[21] 尹良震, 李奇, 韩莹, 等. 空冷型PEMFC发电系统实时最优温度自适应逆控制[J]. 太阳能学报, 2017, 38(8): 2168-2175.
YIN L Z, LI Q, HAN Y, et al.Real-time optimal temperature adaptive inverse control of air-cooling PEMFC power generation system[J]. Acta energiae solaris sinica, 2017, 38(8): 2168-2175.
[22] TANG A H, YANG L, ZENG T, et al.Cascade control method of sliding mode and PID for PEMFC air supply system[J]. Energies, 2022, 16(1): 228.

基金

山东省自然科学基金(ZR2021MF023)

PDF(2031 KB)

Accesses

Citation

Detail

段落导航
相关文章

/