基于REV的钻井液固相颗粒对热储传热性能影响分析

杜佳华, 王志国, 董芋双, 何刘, 曹静, 张艳艳

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 116-123.

PDF(3033 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3033 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 116-123. DOI: 10.19912/j.0254-0096.tynxb.2023-1622

基于REV的钻井液固相颗粒对热储传热性能影响分析

  • 杜佳华, 王志国, 董芋双, 何刘, 曹静, 张艳艳
作者信息 +

ANALYSIS OF EFFECT OF DRILLING FLUID SOLID-PHASE PARTICLES ON HEAT TRANSFER PERFORMANCE IN THERMAL RESERVOIRS BASED ON REPRESENTATIVE ELEMENTARY VOLUME

  • Du Jiahua, Wang Zhiguo, Dong Yushuang, He Liu, Cao Jing, Zhang Yanyan
Author information +
文章历史 +

摘要

为探明钻井液固相颗粒侵入地热储层对传热性能的影响,将地热储层划分为侵入区和原始区,基于表征单元体(REV)思想,进行储层参数描述和表征。提出孔隙型热储侵入区的内、外介质REV导热系数计算模型和串-并联、并-串联宏观导热系数计算模型。针对砂岩热储进行数值计算,分别从孔隙率、含水率和含杂率动态变化角度探讨对热储导热系数的影响规律。结果表明:当含水率、含杂率不变,该文所建4种模型导热系数均随孔隙率的增大呈下降趋势;当孔隙率、含杂率不变,4种模型导热系数均与含水率呈正相关的上升趋势;当孔隙率、含水率不变,4种模型导热系数随含杂率变化的趋势与含水率变化时的趋势基本相似;当孔隙率、含水率以及传热温差不变,两种宏观导热系数计算模型下,通过单位岩体表面的热量均随含杂率的增大而增大,增幅不明显。

Abstract

To investigate the influence of drilling fluid solid-phase particles intruding into the geothermal reservoir on the heat transfer performance, the geothermal reservoir was divided into intrusive and original zones, and the description and characterization of reservoir parameters were carried out based on the idea of representative elementary volume (REV). The internal and external medium REV thermal conductivity calculation models and the series-parallel and parallel-series macroscopic thermal conductivity calculation models for the intrusive zone of a pore-type thermal reservoir are proposed. Numerical calculations are carried out with sandstone thermal reservoirs, from the perspective of porosity, water content, and impurity rate dynamic change, respectively, to explore the influence on the thermal conductivity of thermal reservoirs. The results show that: when the water content and impurity rate are unchanged, the thermal conductivity of the four models constructed in this paper shows a decreasing trend with the increase of porosity; when the porosity and impurity rate are unchanged, the thermal conductivity of the four models shows a positive correlation of upward trend with the water rate; when the porosity and the water content are unchanged, the trend of the thermal conductivity of the four models with the change of the impurity rate is similar to that of the change of the water content;

关键词

地热能 / 导热系数 / 孔隙率 / 表征单元体 / 钻井液固相颗粒

Key words

geothermal energy / thermal conductivity / porosity / representative elementary volume / drilling fluid solid-phase particles

引用本文

导出引用
杜佳华, 王志国, 董芋双, 何刘, 曹静, 张艳艳. 基于REV的钻井液固相颗粒对热储传热性能影响分析[J]. 太阳能学报. 2025, 46(2): 116-123 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1622
Du Jiahua, Wang Zhiguo, Dong Yushuang, He Liu, Cao Jing, Zhang Yanyan. ANALYSIS OF EFFECT OF DRILLING FLUID SOLID-PHASE PARTICLES ON HEAT TRANSFER PERFORMANCE IN THERMAL RESERVOIRS BASED ON REPRESENTATIVE ELEMENTARY VOLUME[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 116-123 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1622
中图分类号: TK521   

参考文献

[1] 汪集暘, 庞忠和, 程远志, 等. 全球地热能的开发利用现状与展望[J]. 科技导报, 2023, 41(12): 5-11.
WANG J Y, PANG Z H, CHENG Y Z, et al.Current state, utilization and prospective of global geothermal energy[J]. Science & technology review, 2023, 41(12): 5-11.
[2] 朱家玲. 地热热储工程技术的发展[J]. 太阳能, 1998, (1): 28-29.
ZHU J L.Development of geothermal reservoir engineering technology[J]. Solar energy, 1998(1): 28-29.
[3] 李铁军, 孟祥瑞. 河南平顶山北部地区地热概念模型研究[J]. 矿产与地质, 2022, 36(2): 368-373, 379.
LI T J, MENG X R.Research on geothermal conceptual model in the northern area of Pingdingshan, Henan[J]. Mineral resources and geology, 2022, 36(2): 368-373, 379.
[4] 高青, 余传辉, 马纯强, 等. 地下土壤导热系数确定中影响因素分析[J]. 太阳能学报, 2008, 29(5): 581-585.
GAO Q, YU C H, MA C Q, et al.Analysis of influence factors on determining the ground thermal conductivity[J]. Acta energiae solaris sinica, 2008, 29(5): 581-585.
[5] 曾召田, 范理云, 莫红艳, 等. 土壤热导率的影响因素实验研究[J]. 太阳能学报, 2018, 39(2): 377-384.
ZENG Z T, FAN L Y, MO H Y, et al.Experimental study of influence factors of soil thermal conductivity[J]. Acta energiae solaris sinica, 2018, 39(2): 377-384.
[6] 张延军, 于子望, 黄芮, 等. 岩土热导率测量和温度影响研究[J]. 岩土工程学报, 2009, 31(2): 213-217.
ZHANG Y J, YU Z W, HUANG R, et al.Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chinese journal of geotechnical engineering, 2009, 31(2): 213-217.
[7] ALBERT K, SCHULZE M, FRANZ C, et al.Thermal conductivity estimation model considering the effect of water saturation explaining the heterogeneity of rock thermal conductivity[J]. Geothermics, 2017, 66: 1-12.
[8] 李守巨, 范永思, 张德岗, 等. 岩土材料导热系数与孔隙率关系的数值模拟分析[J]. 岩土力学, 2007, 28(S1): 244-248.
LI S J, FAN Y S, ZHANG D G, et al.Numerical simulation of relationship between thermal conductivity of geotechnical material and its porosity[J]. Rock and soil mechanics, 2007, 28(S1): 244-248.
[9] 王鹏宇, 王志良, 申林方, 等. 基于格子Boltzmann方法的非饱和土体导热系数研究[J]. 太阳能学报, 2020, 41(4): 287-295.
WANG P Y, WANG Z L, SHEN L F, et al.Research on thermal conductivity of unsaturated soil based on lattice Boltzmann method[J]. Acta energiae solaris sinica, 2020, 41(4): 287-295.
[10] JIA G S, MA Z D, ZHANG Y P, et al.Series-parallel resistance method based thermal conductivity model for rock-soil with low or high porosity[J]. Geothermics, 2020, 84: 101742.
[11] 鲍玲玲, 靳鹏飞, 王雪, 等. 非饱和多孔介质有效导热系数模型[J]. 科学技术与工程, 2022, 22(19): 8327-8332.
BAO L L, JIN P F, WANG X, et al.Model of effective thermal conductivity of unsaturated porous materials based on fractal theory[J]. Science technology and engineering, 2022, 22(19): 8327-8332.
[12] 陈松林, 汪魁, 赵明阶. 基于分形理论的饱和多孔介质电导率模型建立[J]. 科学技术与工程, 2021, 21(36): 15597-15602.
CHEN S L, WANG K, ZHAO M J.Establishment of electrical conductivity model of saturated porous media based on fractal theory[J]. Science technology and engineering, 2021, 21(36): 15597-15602.
[13] 王志国, 赵子琦, 郑刚, 等. 基于REV的保温多孔材料传热“三箱” 分析模型[J]. 工程热物理学报, 2021, 42(8): 1950-1957.
WANG Z G, ZHAO Z Q, ZHENG G, et al.“Three-box” model of heat transfer for porous thermal insulation materials based on REV[J]. Journal of engineering thermophysics, 2021, 42(8): 1950-1957.
[14] 付宇, 裴小龙, 南天浩, 等. 北京凤河营热水储层的钻井液体系优化研究[J]. 探矿工程(岩土钻掘工程), 2018, 45(1): 14-18, 23.
FU Y, PEI X L, NAN T H, et al.Optimization research on drilling fluid system for Beijing fengheying hot water reservoir[J]. Exploration engineering (rock & soil drilling and tunneling), 2018, 45(1): 14-18, 23.
[15] 王立超. 北京地区典型热储层损害评价研究[D]. 北京: 中国地质大学(北京), 2013.
WANG L C.Research on damage evoluation of typical geothermal reservoir in Beijing area[D]. Beijing: China University of Geosciences, 2013.
[16] 秦俊生. 北京地区热储层损害机理研究[D]. 北京: 中国地质大学(北京), 2013.
QIN J S.Research on damage mechanism of geothermal reservoir in Beijing area[D]. Beijing: China University of Geosciences, 2013.
[17] 雷廷, 贾军元, 田福金, 等. 基于BP神经网络预测岩石导热系数[J]. 世界地质, 2021, 40(1): 131-139.
LEI T, JIA J Y, TIAN F J, et al.Prediction of rock thermal conductivity based on BP neural network[J]. Global geology, 2021, 40(1): 131-139.
[18] 王昕玥. 水平井钻井液渗滤及污染评价研究[D]. 大庆: 东北石油大学, 2016.
WANG X Y.Horizontal well drilling fluid percolation and pollution evaluation research[D]. Daqing: Northeast Petroleum University, 2016.
[19] BEAR J.Dynamics of fluids in porous media[J]. Soil science, 1975, 120: 162-163.
[20] ÖCHSNER A, MURCH G E.Heat transfer in multi-phase materials[M]. Berlin: Springer, 2011: 145-149.
[21] 邸元, 康志江, 代亚非, 等. 复杂多孔介质多重介质模型的表征单元体[J]. 工程力学, 2015, 32(12): 33-39.
DI Y, KANG Z J, DAI Y F, et al.Representative elementary volume of the multiple-continuum model for complex porous media[J]. Engineering mechanics, 2015, 32(12): 33-39.
[22] 张田震. 寒区冻土层融化过程传热传质模型构建及应用分析[D]. 大庆: 东北石油大学, 2023.
ZHANG T Z.Construction and application analysis of thermal conductivity model of permafrost melting process in cold region[D]. Daqing: Northeast Petroleum University, 2023.
[23] 张敏. 天津市滨海新区东营组地热资源研究[J]. 石化技术, 2023, 30(12): 157-159.
ZHANG M.Research on geothermal resources of Dongying formation in Binhai new area of Tianjin[J]. Petrochemical industry technology, 2023, 30(12): 157-159.
[24] 薛孟. 寒区地热能开采过程热质传递特性研究[D]. 大庆: 东北石油大学, 2023.
XUE M.Research on the heat and mass transfer characteristics of geothermal energy extraction processes in cold regions[D]. Daqing: Northeast Petroleum University, 2023.
[25] 周阳, 张卉, 桂忠强, 等. 岩土体综合导热系数影响因素研究[J]. 中国地质调查, 2018, 5(1): 89-94.
ZHOU Y, ZHANG H, GUI Z Q, et al.Study on influencing factors of comprehensive thermal conductivity of rock and soil[J]. Geological survey of China, 2018, 5(1): 89-94.
[26] 郭平业, 白宝红, 陈思, 等. 温度和含水率对砂岩导热特性影响实验研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3910-3914.
GUO P Y, BAI B H, CHEN S, et al.Effect of temperature and moisture content on thermal properties of sandstone[J]. Chinese journal of rock mechanics and engineering, 2017, 36(S2): 3910-3914.
[27] 施明恒, 樊荟. 多孔介质导热的分形模型[J]. 热科学与技术, 2002(1): 28-31.
SHI M H, FAN H.A fractal modal for evaluating heat conduction in porous media[J]. Journal of thermal science and technology, 2002(1): 28-31.

基金

国家自然科学基金(51706154); 黑龙江省自然科学基金(E2018011)

PDF(3033 KB)

Accesses

Citation

Detail

段落导航
相关文章

/