基于定向对抗迁移的暂态稳定评估模型

符益华, 卢国强, 王怀远

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 226-234.

PDF(1695 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1695 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 226-234. DOI: 10.19912/j.0254-0096.tynxb.2023-1623

基于定向对抗迁移的暂态稳定评估模型

  • 符益华1, 卢国强2, 王怀远1
作者信息 +

TRANSIENT STABILITY ASSESSMENT MODEL BASED ON DIRECTIONAL ADVERSARIAL TRANSFER LEARNING

  • Fu Yihua1, Lu Guoqiang2, Wang Huaiyuan1
Author information +
文章历史 +

摘要

为解决电网实际故障样本与训练样本分布差异较大而使模型无法评估的问题,提出一种定向对抗迁移的评估模型。首先,建立以堆叠自编码器为基础的传统对抗迁移模型,通过训练样本和潜在样本间的对抗学习,使模型提取到样本的共同特征,提高了模型评估潜在故障的能力;然后,在传统对抗迁移模型的基础上加入一种定向对抗方法,有选择性地迁移训练样本,所提方法根据训练样本和潜在故障样本的相似度值更改不同训练样本在对抗训练中的权重,减小大差异样本对迁移训练的负面影响;在实际区域系统仿真算例中所提方法相较传统对抗迁移模型提高5.72%的准确率。测试结果表明所提方法能够有效提高模型的迁移能力和评估准确率。

Abstract

To address the problem that the model unable to evaluate accurately when the distribution difference between the actual fault samples and the training samples, an evalution model based on directional adversarial transfer is proposed. Firstly, a traditional adversarial transfer model based on stacked auto-encoder is built. Through adversarial learning between training samples and potential samples, the model extracts the common features of the samples, thus improving the ability of the model to evaluate potential faults. Then, a directional adversarial method is added to the traditional adversarial transfer model to selectively transfer the training samples. The proposed method changes the weights of different training samples in the adversarial training according to the similarity values of training samples and potential fault samples, thus reducing the negative impact of large difference samples on transfer training. The proposed method improves the accuracy by 5.72% compared to the traditional adversarial transfer model in the real system simulation examples. The test results show that the proposed method can effectively improve the transferability and evaluation accuracy of the model.

关键词

暂态稳定 / 迁移学习 / 对抗机器学习 / 样本相似度度量 / 堆叠自编码器

Key words

transient stability / transfer learning / adversarial machine learning / sample similarity measure / stacked auto-encoder

引用本文

导出引用
符益华, 卢国强, 王怀远. 基于定向对抗迁移的暂态稳定评估模型[J]. 太阳能学报. 2025, 46(2): 226-234 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1623
Fu Yihua, Lu Guoqiang, Wang Huaiyuan. TRANSIENT STABILITY ASSESSMENT MODEL BASED ON DIRECTIONAL ADVERSARIAL TRANSFER LEARNING[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 226-234 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1623
中图分类号: TM712   

参考文献

[1] 刘俊, 孙惠文, 吴柳, 等. 电力系统暂态稳定性评估综述[J]. 智慧电力, 2019, 47(12): 44-53, 122.
LIU J, SUN H W, WU L, et al.Overview of transient stability assessment of power systems[J]. Smart power, 2019, 47(12): 44-53, 122.
[2] 吴为, 汤涌, 孙华东, 等. 基于广域量测信息的电力系统暂态稳定研究综述[J]. 电网技术, 2012, 36(9): 81-87.
WU W, TANG Y, SUN H D, et al.A survey on research of power system transient stability based on wide-area measurement information[J]. Power system technology, 2012, 36(9): 81-87.
[3] 杨跃, 刘友波, 刘俊勇, 等. 基于神经网络预测校核的暂态稳定预防控制[J]. 电网技术, 2018, 42(12): 4076-4084.
YANG Y, LIU Y B, LIU J Y, et al.Preventive transient stability control based on neural network security predictor[J]. Power system technology, 2018, 42(12): 4076-4084.
[4] 张晨宇, 王慧芳, 叶晓君. 基于XGBoost算法的电力系统暂态稳定评估[J]. 电力自动化设备, 2019, 39(3): 77-83, 89.
ZHANG C Y, WANG H F, YE X J.Transient stability assessment of power system based on XGBoost algorithm[J]. Electric power automation equipment, 2019, 39(3): 77-83, 89.
[5] 刘信彤, 辛业春, 王长江, 等. 基于Smo-PinSVM的含新能源电力系统暂态稳定评估[J]. 太阳能学报, 2021, 42(5): 98-104.
LIU X T, XIN Y C, WANG C J, et al.Transient stability assessment in bulk power grid with renewable energy using Smo-PinSVM[J]. Acta energiae solaris sinica, 2021, 42(5): 98-104.
[6] 刘俐, 李勇, 曹一家, 等. 基于支持向量机和长短期记忆网络的暂态功角稳定预测方法[J]. 电力自动化设备, 2020, 40(2): 129-139.
LIU L, LI Y, CAO Y J, et al.Transient rotor angle stability prediction method based on SVM and LSTM network[J]. Electric power automation equipment, 2020, 40(2): 129-139.
[7] 朱乔木, 党杰, 陈金富, 等. 基于深度置信网络的电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2018, 38(3): 735-743.
ZHU Q M, DANG J, CHEN J F, et al.A method for power system transient stability assessment based on deep belief networks[J]. Proceedings of the CSEE, 2018, 38(3): 735-743.
[8] 赵恺, 石立宝. 基于改进一维卷积神经网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45(8): 2945-2957.
ZHAO K, SHI L B.Transient stability assessment of power system based on improved one-dimensional convolutional neural network[J]. Power system technology, 2021, 45(8): 2945-2957.
[9] 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39.
ZHUANG F Z, LUO P, HE Q, et al.Survey on transfer learning research[J]. Journal of software, 2015, 26(1): 26-39.
[10] PAN S J, YANG Q.A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.
[11] ZHUANG F Z, QI Z Y, DUAN K Y, et al.A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76.
[12] 雷春丽, 薛林林, 焦孟萱, 等. 结合改进ResNet与迁移学习的风力机滚动轴承故障诊断方法[J]. 太阳能学报, 2023, 44(6): 436-444.
LEI C L, XUE L L, JIAO M X, et al.Fault diagnosis method of wind turbines rolling bearing based on improved resnet and transfer learning[J]. Acta energiae solaris sinica, 2023, 44(6): 436-444.
[13] REN C, XU Y.Transfer learning-based power system online dynamic security assessment: using one model to assess many unlearned faults[J]. IEEE transactions on power systems, 2020, 35(1): 821-824.
[14] 张若愚, 吴俊勇, 李宝琴, 等. 基于迁移学习的电力系统暂态稳定自适应预测[J]. 电网技术, 2020, 44(6): 2196-2205.
ZHANG R Y, WU J Y, LI B Q, et al.Self-adaptive power system transient stability prediction based on transfer learning[J]. Power system technology, 2020, 44(6): 2196-2205.
[15] ZHANG W, DENG L F, ZHANG L, et al.A Survey on Negative Transfer[J]. IEEE/CAA journal of automatica sinica, 2023, 10(2): 305-329.
[16] GANIN Y, USTINOVA E, AJAKAN H, et al.Domain-adversarial training of neural networks[J]. Journal of machine learning research, 2017, 17(1): 2096-2030.
[17] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//2014 Proceedings of the 28th Conference on Neural Information Processing Systems (NIPS). Montreal: Ghahramani Z, 2014: 2672-2680.
[18] 余萍, 曹洁. 优化堆叠降噪自动编码器滚动轴承故障诊断[J]. 太阳能学报, 2021, 42(11): 307-314.
YU P, CAO J.Optimized stacked denoising auto-encoders(SDAE)-based fault diagnosis of rolling bearing[J]. Acta energiae solaris sinica, 2021, 42(11): 307-314.
[19] PAN S J, TSANG I W, KWOK J T, et al.Domain adaptation via transfer component analysis[J]. IEEE transactions on neural networks, 2011, 22(2): 199-210.
[20] SMOLA A, GRETTON A, SONG L, et al.A Hilbert space embedding for distributions[C]//2007 Proceedings of the 10th international conference on discovery science. Sendai: Corruble V, 2007: 13-31.
[21] QIAN N.On the momentum term in gradient descent learning algorithms[J]. Neural networks, 1999, 12(1): 145-151.
[22] SUN B C, SAENKO K.Deep CORAL: correlation alignment for deep domain adaptation[C]//2016 Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam: Hua G, 2016: 443-450.
[23] 刘剑, 李兴源, 王成, 等. 电网分区的主动半监督探测方法[J]. 电力自动化设备, 2018, 38(6): 165-171.
LIU J, LI X Y, WANG C, et al.Power grid partition based on active semi-supervised detection method[J]. Electric power automation equipment, 2018, 38(6): 165-171.
[24] 林楠, 王怀远, 陈启凡. 基于后验分布信息的SSAE暂态稳定评估模型倾向性修正方法[J]. 电力自动化设备, 2022, 42(3): 135-141.
LIN N, WANG H Y, CHEN Q F.Tendency correction method of SSAE transient stability assessment model based on posterior distribution information[J]. Electric power automation equipment, 2022, 42(3): 135-141.

基金

福建省自然科学基金(2022J0113); 国网青海省电力公司科技项目(522800230001)

PDF(1695 KB)

Accesses

Citation

Detail

段落导航
相关文章

/