微能源网是一种典型的信息物理系统,通过稀疏网络传递控制信息,易受网络攻击,影响系统的稳定性,甚至造成系统失稳。该文将拒绝服务攻击考虑到微能源网信息物理系统(CPS)控制中,分析拒绝服务攻击机理以及攻击频率对系统的影响。并设计基于事件触发一致性算法的弹性控制器,通过Lyapunov理论证明该控制系统的稳定性,能够避免Zeno现象的发生。该控制器能够在拒绝服务攻击下实现控制目标,并具有较好的动态性能。最后,在Matlab/Simulink仿真平台验证该控制方法的可行性和有效性。
Abstract
Micro-energy grid is a typical cyber physical system. It transmits control information through sparse network, which is vulnerable to cyber-attacks, affects the stability of the system, and even causes system instability. This paper takes the denial-of- service attack into account in the CPS control of micro energy grid, analyzes the mechanism of denial of service attack, and the impact of attack frequency on the system. An elastic controller based on event-triggered consensus algorithm is designed. The stability of the control system is proved by Lyapunov theory, which can avoid Zeno phenomenon. This controller can achieve control objectives under denial-of-service attacks and has good dynamic performance. Finally, the feasibility and effectiveness of the proposed control method are verified on the MATLAB/Simulink simulation platform.
关键词
信息物理系统 /
拒绝服务攻击 /
Lyapunov 函数 /
微能源网 /
事件触发一致性 /
弹性控制
Key words
cyber physical system /
denial-of-service attack /
Lyapunov function /
micro-energy grid /
event-triggered consensus /
elastic control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张虹, 张瑞芳, 周建丞, 等. 基于主从博弈和混合碳政策的园区综合能源系统低碳经济调度[J]. 太阳能学报, 2023, 44(9): 9-17.
ZHANG H, ZHANG R F, ZHOU J C, et al.Low-carbon economic dispatch of integrated energy system in campus based on Stackelberg game and hybrid carbon policy[J]. Acta energiae solaris sinica, 2023, 44(9): 9-17.
[2] DU E S, ZHANG N, HODGE B M, et al.The role of concentrating solar power toward high renewable energy penetrated power systems[J]. IEEE transactions on power systems, 2018, 33(6): 6630-6641.
[3] ZHANG H L, ZHOU S Y, GU W, et al.Optimal operation of micro-energy grids considering shared energy storage systems and balanced profit allocations[J]. CSEE journal of power and energy systems, 2023, 9(1): 254-271.
[4] YAN A L, HUANG T, KE L S, et al.Explanation leaks: explanation-guided model extraction attacks[J]. Information sciences, 2023, 632: 269-284.
[5] WANG B Y, SUN Q Y, HAN R K, et al.Consensus-based secondary frequency control under denial-of-service attacks of distributed generations for microgrids[J]. Journal of the Franklin Institute, 2021, 358(1): 114-130.
[6] HUNT K, AGARWAL P, ZHUANG J.Technology adoption for airport security: modeling public disclosure and secrecy in an attacker-defender game[J]. Reliability engineering & system safety, 2021, 207: 107355.
[7] YAO W T, WANG Y, XU Y, et al.Cyber-resilient control of an islanded microgrid under latency attacks and random DoS attacks[J]. IEEE transactions on industrial informatics, 2023, 19(4): 5858-5869.
[8] DENG C, WEN C Y, ZOU Y, et al.A hierarchical security control framework of nonlinear CPSs against DoS attacks with application to power sharing of AC microgrids[J]. IEEE transactions on cybernetics, 2022, 52(6): 5255-5266.
[9] JOUNG K W, KIM T, PARK J W.Decoupled frequency and voltage control for stand-alone microgrid with high renewable penetration[J]. IEEE transactions on industry applications, 2019, 55(1): 122-133.
[10] 于国星, 侯睿, 汪任潇, 等. 孤岛微网分层分布式频率调节及功率优化控制[J]. 电力系统自动化, 2020, 44(7): 53-60.
YU G X, HOU R, WANG R X, et al.Hierarchical distributed frequency regulation and power optimization control for islanded microgrid[J]. Automation of electric power systems, 2020, 44(7): 53-60.
[11] 吴丽珍, 雷艾虎, 郝晓弘. 孤岛微电网电压无功分布式分层协同控制[J]. 太阳能学报, 2017, 38(4): 1045-1054.
WU L Z, LEI A H, HAO X H.Distributed hierarchical coordinated control for voltage and reactive power in islanded microgrid[J]. Acta energiae solaris sinica, 2017, 38(4): 1045-1054.
[12] WU C W, WU L G, LIU J X, et al.Active defense-based resilient sliding mode control under denial-of-service attacks[J]. IEEE transactions on information forensics and security, 2020, 15: 237-249.
[13] BEFEKADU G K, GUPTA V, ANTSAKLIS P J.Risk-sensitive control under Markov modulated denial-of-service (DoS) attack strategies[J]. IEEE transactions on automatic control, 2015, 60(12): 3299-3304.
[14] HU S L, YUE D, XIE X P, et al.Resilient event-triggered controller synthesis of networked control systems under periodic DoS jamming attacks[J]. IEEE transactions on cybernetics, 2019, 49(12): 4271-4281.
[15] CETINKAYA A, ISHII H, HAYAKAWA T.Networked control under random and malicious packet losses[J]. IEEE transactions on automatic control, 2017, 62(5): 2434-2449.
[16] FENG Z, HU G Q.Secure cooperative event-triggered control of linear multiagent systems under DoS attacks[J]. IEEE transactions on control systems technology, 2020, 28(3): 741-752.
[17] 杨飞生, 汪璟, 潘泉, 等. 网络攻击下信息物理融合电力系统的弹性事件触发控制[J]. 自动化学报, 2019, 45(1): 110-119.
YANG F S, WANG J, PAN Q, et al.Resilient event-triggered control of grid cyber-physical systems against cyber attack[J]. Acta automatica sinica, 2019, 45(1): 110-119.
[18] LI Z W, CHE W W.Event-triggered asynchronous periodic distributed secondary control of microgrids under DoS attacks[J]. Journal of the Franklin Institute, 2022, 359(17): 9473-9491.
[19] 杨义, 杨苹. 面向集中式控制的微电网信息物理系统分层建模方法[J]. 中国电机工程学报, 2022, 42(19): 7088-7102.
YANG Y, YANG P.The hierarchical modeling approach for centralized control microgrid cyber physical system[J]. Proceedings of the CSEE, 2022, 42(19): 7088-7102.
[20] YANG Y, LI Y F, YUE D, et al.Distributed secure consensus control with event-triggering for multiagent systems under DoS attacks[J]. IEEE transactions on cybernetics, 2021, 51(6): 2916-2928.
[21] 徐岩, 刘婧妍. 直流系统故障选线和故障类型识别方法研究[J]. 太阳能学报, 2018, 39(8): 2279-2286.
XU Y, LIU J Y.Reasearch of fault line selection and fault type recognition method of dc system based on graph theory[J]. Acta energiae solaris sinica, 2018, 39(8): 2279-2286.
[22] KHALIL H K.Nonlinear systems: international edition[J]. Bulletin of the American Academy of Arts & Sciences, 2002, 53(5): 20-24.
基金
国家自然科学基金(62063016); 甘肃省教育厅研究生“创新之星”项目(2023CXZX-475)