以空中风力发电系统(AWES)可捕获的风能为研究对象,采用2012—2021年ERA5再分析资料,对全国范围内300~3000 m之间风速和风功率密度的空间分布、随高度变化、季节变化和日内变化等特征进行分析并按七大区域进行统计。研究结果显示:高风速区与高海拔区域的空间分布基本一致,风速和风功率密度随高度上升持续增大,东北、华北、西北等“三北”区域的风廓线形态更适宜开发高空风能资源;风速和风功率密度的季节变幅随高度升高而有所增大,但变化曲线形态逐渐趋同;风速的日内变化幅度逐渐降低,区域之间的差异也在缩小。研究表明,切风型AWES系统的风能利用潜力低于其他AWES形式,对于中国现有的空域使用情况,采用切风型AWES系统开发高空风能时,建议规划比其他AWES形式更高的运行高度。
Abstract
Focusing on the high-altitude wind energy that could be captured by the Airborne Wind Energy System (AWES), the spatial and temporal characteristics of wind speed and wind power density from 300 m to 3000 m above ground are analyzed and compared between seven regions for China with the ERA5 reanalysis data. The results show that the spatial distribution of high wind speed area and high altitude area basically overlap. Wind speed and wind power density continue to increase with the rise of height and the wind profile of Northeast China, North China, Northwest China are more suitable for exploiting high-altitude wind resources. The seasonal variations of wind speed and wind power density also increase with the rise of height. While the daily variation of wind speed gradually decreases and the inter-regional differences narrow. This work suggests that the wind energy utilization potential of the cross-wind mode AWES is lower than other kind of AWES. It is necessary to plan for a higher operating altitude for cross-wind mode AWES in considering of the existing status of airspace utilization in China.
关键词
风能 /
风电场 /
大气边界层 /
质量控制 /
再分析资料
Key words
wind energy /
wind farm /
atmospheric boundary layer /
quality control /
reanalysis data
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家能源局. 国家能源局发布2022年全国电力工业统计数据[J]. 电力勘测设计, 2023(1): 24.
National Energy Administration.National Energy Administration released statistical data of national electric power industry in2022[J]. Electric power survey & design, 2023(1): 24.
[2] Airborne Wind Europe.Airborne wind energy systems [EB/OL]. [2023-10-05].https://airbornewindeurope.org/awe-systems/.
[3] CHERUBINI A, PAPINI A, VERTECHY R, et al.Airborne wind energy systems: a review of the technologies[J]. Renewable and sustainable energy reviews, 2015, 51: 1461-1476.
[4] WEBER J, MARQUIS M, LEMKE A, et al.Proceeding of the 2021 airborne wind energy workshop[R]. Golden, USA: National Renewable Energy Laboratory, 2021.
[5] ARCHER C L, CALDEIRA K.Global assessment of high-altitude wind power[J]. Energies, 2009, 2(2): 307-319.
[6] LUNNEY E, BAN M, DUIC N, et al.A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland[J]. Renewable and sustainable energy reviews, 2017, 68: 899-911.
[7] YIP C M A, GUNTURU U B, STENCHIKOV G L. High-altitude wind resources in the Middle East[J]. Scientific reports, 2017, 7(1): 9885.
[8] BECHTLE P, SCHELBERGEN M, SCHMEHL R, et al.Airborne wind energy resource analysis[J]. Renewable energy, 2019, 141: 1103-1116.
[9] ONEA F, MANOLACHE A I, GANEA D.Assessment of the black sea high-altitude wind energy[J]. Journal of marine science and engineering, 2022, 10(10): 1463.
[10] 陈城, 孟丹, 孙朋杰. 利用探空风资料研究我国中低空风速变化规律[J]. 干旱气象, 2018, 36(1): 82-89.
CHEN C, MENG D, SUN P J.Research on change characteristics of wind speed at mid-low altitude layer over China based on radiosonde wind speed data[J]. Journal of arid meteorology, 2018, 36(1): 82-89.
[11] WANG J Z, LI Q W, MA X J, et al.Distribution parameter-determining method comparison for airborne wind energy potential assessment in the eastern coastal area of China[J]. Sustainable energy technologies and assessments, 2022, 52: 102161.
[12] DURRE I, YIN X G, VOSE R S, et al.Enhancing the data coverage in the integrated global radiosonde archive[J]. Journal of atmospheric and oceanic technology, 2018, 35(9): 1753-1770.
[13] 王若钦, 严德, 李柳青, 等. 切风模式风力发电飞行器的进展与挑战[J]. 航空工程进展, 2018, 9(2): 139-146.
WANG R Q, YAN D, LI L Q, et al.Advances and challenges of crosswind mode airborne wind energy aircrafts[J]. Advances in aeronautical science and engineering, 2018, 9(2): 139-146.
[14] KITEGEN. KiteGen research [EB/OL].[2023-10-04]. https//www.kitegen.com/en/.
[15] ENERKITE. Flugwindkraft_enerkite [EB/OL].[2023-10-04]. https://enerkite.de/en/.
[16] SKYSAIL Power.Wind power: Unleashing its true potential [EB/OL]. [2023-10-04].https://skysails-power.com.
[17] MAKANI POWER.Airborne Wind Turbine [EB/OL]. https://arpa-e.energy.gov/technologies/projects/airborne-wind-turbine.
[18] MIT. High-flying turbine produces more power [EB/OL].https://news.mit.edu/2014/high-flying-turbine-produces-more-power-0515.
[19] OMNIDEA. Aerospace technologies and energy systems [EB/OL].
[20] 闫溟, 喻海川, 陈冰雁. “浮空型” 高空风力发电机关键参数变化影响规律研究[J]. 太阳能学报, 2019, 40(9): 2449-2455.
YAN M, YU H C, CHEN B Y.Study of effect of various key parameter on floating type awes[J]. Acta energiae solaris sinica, 2019, 40(9): 2449-2455.
[21] 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42(6): 409-418.
ZHU R, WANG Y, XIANG Y, et al.Stydy on climate characteristics and development potential of wind energy resources in China[J]. Acta energiae solaris sinica, 2021, 42(6): 409-418.
[22] 朱蓉, 徐红, 龚强, 等. 中国风能开发利用的风环境区划[J]. 太阳能学报, 2023, 44(3): 55-66.
ZHU R, XU H, GONG Q, et al.Wind environmental regionalization for development and utilization of wind energy in china[J]. Acta energlae solaris sinica, 2023, 44(3): 55-66.
[23] 中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 [EB/OL]. (2021-03-13) [2023-10-05].
The Central People's Goverment of People’s Republic of China. Outline of the 14 th five year plan for national economic and social development of the People’s Republic of China and the long range objectives for2035[EB/OL]. [2023-10-05].
基金
中国能源建设股份有限公司重大科技项目(CEEC-KJZX-03)