模拟含有杂质的三氯硅烷经过歧化反应生产高纯度硅烷的反应精馏过程。运用反应精馏法可解决三氯硅烷在歧化反应中转化率低以及杂质含量高的问题。通过调节进料位置、精馏比、回流比、停留时间来供来确定最佳的操作条件。模拟结果表明,在进料位置为第21块塔板、精馏比为0.2、回流比为49.43和停留时间为20 s的条件下,硅烷纯度可达到5N,杂质含量降低到10-18,可直接用于太阳能级多晶硅的生产;或对硅烷进行纯化使其纯度达到9N后,再进行热分解生产电子级多晶硅。
Abstract
The article simulates the reaction distillation process for producing high-purity monosilane from trichlorosilane-containing impurities through a disproportionation reaction. Using reaction distillation method can solve the problems of low conversion rate and high impurity content in the disproportionation reaction of trichlorosilane. The optimal operating conditions are determined by adjusting the feed position, distillation ratio, reflux ratio, and residence time. The simulation results show that under the conditions of a feed position of the 21st plate, a distillation ratio of 0.2, a reflux ratio of 49.43, and a residence time of 20 s, the purity of silane can reach 5N, and the impurity content is reduced to 10-18, which can be directly used for the production of solar-grade polysilicon; or the purity of silane can reach 9N after purification, and then undergo thermal decomposition to produce electronic-grade polysilicon.
关键词
精馏塔 /
硅烷 /
反应动力学 /
平衡级模型 /
太阳能级多晶硅
Key words
distillation columns /
silane /
reaction kinetics /
equilibrium stage model /
solar-grade polysilicon
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 聂陟枫, 戴恩睿, 谢刚, 等. 多晶硅还原炉高频交流电加热机制研究[J]. 太阳能学报, 2021, 42(2): 451-458.
NIE Z F, DAI E R, XIE G, et al.Investigation on heating mechanism of high frequency alternating current in polysilicon reduction furnace[J]. Acta energiae solaris sinica, 2021, 42(2): 451-458.
[2] Union Carbide Corporation. Process of making silane: CA19750218542[P].1979-02-06.
[3] 杜欢, 吴兢, 孙建华, 等. 新型纳米蜂窝超结构纹理多晶硅的制备、表征及性能研究[J]. 太阳能学报, 2021, 42(7): 161-166.
DU H, WU J, SUN J H, et al.Preparation, characterization and property study of novel nanoscale honeycomb superstructure texture multi-crystalline silicon[J]. Acta energiae solaris sinica, 2021, 42(7): 161-166.
[4] LEPAGE J L, SOULA G. Preparation of silane from methyldichlorosilane and chlorosilanes: US4605543[P].1986-08-12.
[5] 姜文正, 毛文军, 曹忠, 等. 一种去除三氯氢硅中磷硼杂质的工艺: CN101920961A[P].2010-12-22.
JIANG W Z, MAO W J, CAO Z, et al. A method for removing phosphorus and boron from trichlorosilane process of impurities: CN101920961A [P].2010-12-22.
[6] PLAHUTNIK F, ARVIDSON A, SAWYER D, et al.Development of a polysilicon process based on chemical vapor deposition, phase 1 and phase 2[J]. Technical eport, 1982.
[7] BRENEMAN W C, MUI J Y P, Low cost silicon solar array project. Task 1: establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH4[J]. Annual report union carbide corpsistersville, WV, 1976.
[8] BRENEMAN W C, MORIHARA H, FARRIER E G,Low cost silicon solar array project: Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon[R]. DOE/JPL/954334-9, 1978,0(0).
[9] LI K Y, HUANG C D.Redistribution reaction of trichlorosilane in a fixed-bed reactor[J]. Industrial & engineering chemistry research, 1988, 27(9): 1600-1606.
[10] SUN S S, HUANG G Q.Simulation of reactive distillation process for monosilane production via redistribution of trichlorosilane[J]. Chinese journal of chemical engineering, 2014, 22(3): 287-293.
[11] 黄国强, 石秋玲, 王红星, 等. 一种适用于催化反应精馏的新型填料[J]. 化学工程, 2012, 40(5): 15-18.
HUANG G Q, SHI Q L, WANG H X, et al.New type structured packing used in catalytic reaction distillation[J]. Chemical engineering (China), 2012, 40(5): 15-18.
[12] 张远弟. 改良西门子法精馏过程的模拟和优化及其节能工艺研究[D]. 昆明: 昆明理工大学, 2015.
ZHANG Y D.Simulation and optimization of improved Siemens distillation process and research on its energy-saving process[D]. Kunming: Kunming University of Science and Technology, 2015.
[13] 谢旭. 反应精馏用于硅烷法生产多晶硅过程的模拟研究[D]. 东营: 中国石油大学(华东), 2016.
XIE X.Simulation study on reactive distillation used in the production of polysilicon by silane method[D]. Dongying: China University of Petroleum (Huadong), 2016.