为提高相变蓄热真空太阳能集热器的热性能,针对相变填充材料固态时传热性能低、集热管释热效率低等问题,提出一种新型的带有一体化轴向双翼翅片结构的U型管式相变蓄热真空太阳集热管结构,分析在不同质量流量运行工况下翅片主要结构参数对集热管释热和蓄热性能的影响,得出最佳的翅片结构参数,并与两种传统结构的集热管性能进行对比分析。结果表明:对于外径为58 mm的玻璃真空太阳集热管,采用复合相变填充材料Na2SO4·10H2O+石墨(质量比92%∶8%)时,释热和蓄热性能最佳的翅片结构参数是翅片长度/翅片夹角为17 mm/60°;该最佳翅片结构能显著强化集热管内的传热性能,使集热管内相变填充材料的温度均匀性更好,使新型U型管式相变蓄热真空太阳集热管相较于圆翅片、无翅片结构形式的集热管,释热量最高可分别提高6.4%和112.6%,释热效率最高可分别提高6.4%和117.4%。
Abstract
To enhance the thermal performance of phase change heat storage evacuated solar collectors, a new type of U-tubular phase change heat storage evacuated solar collector tube structure with an integrated axial double-wing fin structure is proposed. This design aims to address the issues of low heat transfer performance and low heat release efficiency of the collector tube when the phase change filling material is in a solid state. The influence of the main structural parameters of the fin on the heat release and heat storage performance of the collector tube is analyzed under different mass flow operating conditions, and the optimal fin structure parameters are determined. Furthermore, the performance of collector tubes with two conventional structures is compared and analyzed. The results indicate that, for the all-glass evacuated solar collector tube with an outer diameter of 58 mm, using a composite phase change filling material consisting of Na2SO4·10H2O and graphite (mass ratio 92%:8%), the optimal finned structure parameters, fin length/fin angle, for achieving the best heat release and heat storage performance are determined to be 17 mm/60°. The optimal fin structure significantly improves the heat transfer performance within the collector tube and enhances the temperature uniformity of the phase change filling material. Comparing the collector tube with the round fin and no fin structure, the optimal fin structure in the new U-tubular phase change heat storage evacuated solar collector tube increases the heat release by up to 6.4% and 112.6% and improves the heat release efficiency by up to 6.4% and 117.4%, respectively.
关键词
相变 /
蓄热 /
真空管太阳能集热器 /
真空太阳集热管 /
释热性能
Key words
phase change /
heat storage /
evacuated solar collector /
evacuated solar collector tube /
heat release properties
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘艳峰, 李彤, 李勇, 等. 相变蓄热U型真空管太阳能集热器热性能研究[J]. 太阳能学报, 2021, 42(7): 244-250.
LIU Y F, LI T, LI Y, et al.Thermal performance of U-pipe evacuated tube solar collector with latent heat thermal energy storage[J]. Acta energiae solaris sinica, 2021, 42(7): 244-250.
[2] 李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562.
LI S K, LIN Y, PAN F.Research progress in thermal energy storage and conversion technology[J]. Energy storage science and technology, 2022, 11(5): 1551-1562.
[3] 仝仓, 李祥立, 端木琳. 多管式相变蓄热器换热影响因素研究[J]. 太阳能学报, 2019, 40(8): 2299-2305.
TONG C, LI X L, DUANMU L.Study on heat transfer influence factors of multitube phase change thermal accumulator[J]. Acta energiae solaris sinica, 2019, 40(8): 2299-2305.
[4] OGOH W, GROULX D.Effects of the number and distribution of fins on the storage characteristics of a cylindrical latent heat energy storage system: a numerical study[J]. Heat and mass transfer, 2012, 48(10): 1825-1835.
[5] 安玉娇, 高岩, 李德英. U型管集热器流场和热特性的数值模拟[J]. 能源技术, 2010, 31(3): 169-174.
AN Y J, GAO Y, LI D Y.Analysis and simulation study of flow and thermal performance in the U-tube solar collector[J]. Energy technology, 2010, 31(3): 169-174.
[6] ABOKERSH M H, EL-MORSI M, SHARAF O, et al.An experimental evaluation of direct flow evacuated tube solar collector integrated with phase change material[J]. Energy, 2017, 139: 1111-1125.
[7] ALGARNI S, MELLOULI S, ALQAHTANI T, et al.Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster[J]. Applied thermal engineering, 2020, 180: 115831.
[8] HAMADA M A, EHAB A, KHALIL H, et al.Thermal performance augmentation of parabolic trough solar collector using nanomaterials, fins and thermal storage material[J]. Journal of energy storage, 2023, 67: 107591.
[9] ABO-ELFADL S, HASSAN H, EL-DOSOKY M F. Energy and exergy assessment of integrating reflectors on thermal energy storage of evacuated tube solar collector-heat pipe system[J]. Solar energy, 2020, 209: 470-484.
[10] ESSA M A, ROFAIEL I Y, AHMED M A.Experimental and theoretical analysis for the performance of evacuated tube collector integrated with helical finned heat pipes using PCM energy storage[J]. Energy, 2020, 206: 118166.
[11] MOJTABA TABARHOSEINI S, SHEIKHOLESLAMI M.Modeling of evacuated tube solar collector involving longitudinal fins and nanofluids[J]. Sustainable energy technologies and assessments, 2022, 53: 102587.
[12] 薛花. 相变储能型太阳能真空集热管内相变传热研究[D]. 南京: 东南大学, 2015.
XUE H.Study on phase change heat transfer in phase change energy storage solar vacuum collector tube[D].Nanjing: Southeast University, 2015.
[13] 刘仙萍, 周熙雅, 雷豫豪, 等. 一种带有U型翅片换热管的相变储能太阳能集热管: CN218864509U[P].2023-04-14.
LIU X P, ZHOU X Y, LEI Y H, et al. A phase change energy storage solar collector tube with U-shaped fin heat exchanger: CN218864509U[P].2023-04-14.
[14] WANG Y, GE S X, HUANG B J, et al.A simple route to PVC encapsulated Na2SO4·10H2O nano/micro-composite with excellent energy storage performance[J]. Materials chemistry and physics, 2019, 223: 723-726.
[15] LI C C, ZHANG B, XIE B S, et al.Tailored phase change behavior of Na2SO4·10H2O/expanded graphite composite for thermal energy storage[J]. Energy conversion and management, 2020, 208: 112586.
[16] 刘宇飞, 章学来, 华维三, 等. 相变蓄热式集热器蓄放热数值与实验分析[J]. 太阳能学报, 2017, 38(9): 2486-2492.
LIU Y F, ZHANG X L, HUA W S, et al.Numerical analysis of heat charge and discharge characteristics of solar collectors integrated with phase change thermal storage[J]. Acta energiae solaris sinica, 2017, 38(9): 2486-2492.
基金
科技部高端外国专家项目(G2023029004L); 国家自然科学基金(42202321)