基于尾流重定向风电场输出功率与载荷的联合优化

刘军, 武培东, 王启超, 朱世祥

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 607-614.

PDF(1870 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1870 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 607-614. DOI: 10.19912/j.0254-0096.tynxb.2023-1651

基于尾流重定向风电场输出功率与载荷的联合优化

  • 刘军, 武培东, 王启超, 朱世祥
作者信息 +

JOINT OPTIMIZATION OF WIND FARM OUTPUT POWER AND LOAD BASED ON WAKE REDIRECTION

  • Liu Jun, Wu Peidong, Wang Qichao, Zhu Shixiang
Author information +
文章历史 +

摘要

首先建立基于多翼型的偏航叶素-动量理论模型,用于计算偏航风力机的载荷;并基于此模型,建立包含风电场功率与载荷的尾流重定向优化目标函数,并提出一种新的风电场输出功率与载荷的联合优化策略;基于Matlab软件,搭建3×3的风电场模型并进行仿真研究。仿真结果表明,所提基于多翼型的偏航叶素-动量理论模型能准确计算偏航风力机叶片挥舞力矩,改进的尾流重定向优化与所提新型联合优化方法可在提升风电场功率的同时显著降低风电场载荷。

Abstract

This paper initially establishes a yawed blade-element momentum theory model grounded on multiple airfoil profiles, which is employed to calculate the loads acting on yawed wind turbines. Subsequently, based on this model, an objective function for wake - redirection optimization that comprehensively incorporates both the power output of the wind farm and the loads it bears is formulated, and a novel joint-optimization strategy for concurrently enhancing the wind-farm output power and minimizing its loads is proposed. Utilizing Matlab software, a 3×3 wind-farm model is constructed and undergoes simulation studies. The simulation results demonstrate that the proposed yawed blade-element momentum theory model based on multiple airfoil profiles can accurately compute the flap-wise moment of yawed wind-turbine blades. Moreover, the improved wake-redirection optimization approach and the novel joint-optimization method can significantly reduce the loads on the wind farm while effectively increasing its power output.

关键词

风电场 / 尾流 / 风力机 / 功率 / 载荷 / 偏航

Key words

wind farm / wakes / wind turbines / power / loads / yaw

引用本文

导出引用
刘军, 武培东, 王启超, 朱世祥. 基于尾流重定向风电场输出功率与载荷的联合优化[J]. 太阳能学报. 2025, 46(2): 607-614 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1651
Liu Jun, Wu Peidong, Wang Qichao, Zhu Shixiang. JOINT OPTIMIZATION OF WIND FARM OUTPUT POWER AND LOAD BASED ON WAKE REDIRECTION[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 607-614 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1651
中图分类号: TM614    TM91   

参考文献

[1] 全球风能理事会. 2023全球风电行业报告: 全球风能理事会全球风能报告2023[R]. 2023-03-27.
Global wind energy council.2023 global wind power industry report: GWEC Global-Wind-Report-2023[R] March 27, 2023.
[2] 国家能源局: 我国可再生能源实现跨跃式发展: 我国可再生能源发展有关情况介绍[J]. 中国电业, 2021(4): 6-9.
National energy administration. China’s renewable energy realizes leap-forward development: introduction of China’s renewable energy development[J]. China electric power, 2021(4): 6-9.
[3] SUN H Y, GAO X X, YANG H X.A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect[J]. Renewable and sustainable energy reviews, 2020, 132: 110042.
[4] DONG G D, LI Z B, QIN J H, et al.How far the wake of a wind farm can persist for?[J]. Theoretical and applied mechanics letters, 2022, 12(1): 100314.
[5] 宗豪华, 孙恩博. 水平轴风力机主动尾流控制综述[J]. 空气动力学学报, 2022, 40(4): 51-68.
ZONG H H, SUN E B.Reivew of active wake control for horizontal-axis wind turbines[J]. Acta aerodynamica sinica, 2022, 40(4): 51-68.
[6] NASH R, NOURI R, VASEL-BE-HAGH A. Wind turbine wake control strategies: a review and concept proposal[J]. Energy conversion and management, 2021, 245: 114581.
[7] ARCHER C L, VASEL-BE-HAGH A. Wake steering via yaw control in multi-turbine wind farms: recommendations based on large-eddy simulation[J]. Sustainable energy technologies and assessments, 2019, 33: 34-43.
[8] FLEMING P A, GEBRAAD P M O, LEE S, et al. Evaluating techniques for redirecting turbine wakes using SOWFA[J]. Renewable energy, 2014, 70: 211-218.
[9] DHIMAN H S, DEB D, FOLEY A M.Lidar assisted wake redirection in wind farms: a data driven approach[J]. Renewable energy, 2020, 152: 484-493.
[10] 李雄威, 徐家豪, 朱润泽, 等. 基于偏航尾流模型的风电场功率协同优化研究[J]. 太阳能学报, 2022, 43(10): 144-151.
LI X W, XU J H, ZHU R Z, et al.Study on power collaborative optimization of wind farm based on yaw wake model[J]. Acta energiae solaris sinica, 2022, 43(10): 144-151.
[11] SUN J L, CHEN Z, YU H, et al.Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore wind turbines[J]. Renewable energy, 2022, 199: 71-86.
[12] HE R Y, YANG H X, LU L.Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control[J]. Applied energy, 2023, 337: 120878.
[13] VAN DIJK M T, VAN WINGERDEN J W, ASHURI T, et al. Wind farm multi-objective wake redirection for optimizing power production and loads[J]. Energy, 2017, 121: 561-569.
[14] ZALKIND D S, PAO L Y.The fatigue loading effects of yaw control for wind plants[C]//2016 American Control Conference (ACC). Boston, MA, USA, 2016: 537-542.
[15] LI B L, HE J, GE M W, et al.Study of three wake control strategies for power maximization of offshore wind farms with different layouts[J]. Energy conversion and management, 2022, 268: 116059.
[16] ZHAO L Y, GONG F X, CHEN S S, et al.Optimization study of control strategy for combined multi-wind turbines energy production and loads during wake effects[J]. Energy reports, 2022, 8: 1098-1107.
[17] GEBRAAD P M O, TEEUWISSE F W, VAN WINGERDEN J W, et al. A data-driven model for wind plant power optimization by yaw control[C]//2014 American Control Conference. Portland, OR, USA, 2014: 3128-3134.
[18] JIMÉNEZ Á, CRESPO A, MIGOYA E. Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind energy, 2010, 13(6): 559-572.
[19] BASTANKHAH M, PORTÉ-AGEL F.Experimental and theoretical study of windturbine wakes in yawed conditions[J]. Journal of fluid mechanics, 2016, 806: 506-541.
[20] 曲佳佳. 风力机叶片气动载荷的计算方法研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2014.
QU J J.Research on the calculation methods of wind turbine blade’s aerodynamic load[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2014.
[21] DEHOUCK V, LATEB M, SACHEAU J, et al.Application of the blade element momentum theory to design horizontal axis wind turbine blades[J]. Journal of solar energy engineering, 2018, 140(1): 014501.
[22] MORIARTY P J, HANSEN A C.AeroDyn theory manual[R]. National Renewable Energy Lab., Golden, CO(US), 2005.
[23] 韩兵, 周腊吾, 陈浩, 等. 大型风机的独立变桨控制方法[J]. 电力系统保护与控制, 2016, 44(2): 1-8.
HAN B, ZHOU L W, CHEN H, et al.Methods of individual pitch control for large wind turbine[J]. Power system protection and control, 2016, 44(2): 1-8.
[24] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[J]. Contract, 2009(February): 1-75.
[25] 鞠浩, 王旭东, 陆佳红. 基于混合参数化与粒子群算法的风力机翼型气动优化设计[J]. 太阳能学报, 2023, 44(5): 473-479.
JU H, WANG X D, LU J H.Aerddynamic optimization design of wind turbine airfoil based on hybrid parameterization and particle swarm algorithm[J]. Acta energiae solaris sinica, 2023, 44(5): 473-479.
[26] HE R Y, YANG H X, SUN S L, et al.A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control[J]. Applied energy, 2022, 326: 120013.

基金

陕西省重点研发计划(2021GY-106); 西安市攻关项目(5025)

PDF(1870 KB)

Accesses

Citation

Detail

段落导航
相关文章

/