基于特征数据信息熵的锂离子储能电站电芯健康状态评估与预测方法研究

夏向阳, 岳家辉, 张媛, 夏天, 王明琦

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 78-89.

PDF(4983 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4983 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 78-89. DOI: 10.19912/j.0254-0096.tynxb.2023-1653

基于特征数据信息熵的锂离子储能电站电芯健康状态评估与预测方法研究

  • 夏向阳, 岳家辉, 张媛, 夏天, 王明琦
作者信息 +

SOH ESTIMATION AND PREDICTION METHOD FOR CELLS OF LITHIUM-ION ENERGY STORAGE POWER STATION BASED ON INFORMATION ENTROPY OF CHARACTERISTIC DATA

  • Xia Xiangyang, Yue Jiahui, Zhang Yuan, Xia Tian, Wang Mingqi
Author information +
文章历史 +

摘要

针对锂离子储能电站簇内电芯老化程度及其一致性难以准确评估的问题,提出基于特征数据信息熵的储能电站锂离子电池健康状态评估与预测方法。该方法将传统属性数据进行优化预处理以形成特征数据集,提出将信息熵概念移植到储能电站特定运行片段数据来展开分析,依据计算特征数据熵值大小情况来反映特征数据的有序程度,实现对簇内电芯老化程度及其一致性的分析判断,同时利用神经网络对熵值进行预测来对储能电站健康状态进行短期预测。最后通过储能电站实际运行数据与20S1P电池仿真模型验证基于特征数据信息熵值法对储能电站健康状态评估与预测的可行性与有效性,并在100 kW/200 kWh储能系统平台进行实际工程应用。

Abstract

In response to the challenge of estimating the aging degree and consistency of cells accurately in lithium-ion battery energy storage power station, this paper proposes a method for evaluating and predicting the health status of these cells based on the information entropy of characteristic data. This method involves optimizing and preprocessing traditional attribute data to form a characteristic data set. And it applies the concept of information entropy to analyze specific operation segment data of energy storage power stations innovatively. By calculating the entropy value of the characteristic data, the level of orderliness of the data can be determined, enabling analysis and assessment of the aging degree and consistency of cells within the cluster. Additionally, a neural network is utilized to predict the entropy value for health status short-term forecasting of the energy storage power station. The feasibility and effectiveness of this method, based on characteristic data information entropy for evaluating and predicting the health status of cells, are validated through simulation models of 20S1P cells and actual operation data from energy storage power plants. Furthermore, the method is applied in the actual engineering project involving a 100 kW/200 kWh energy storage system.

关键词

锂离子电池 / 电池簇 / 信息熵 / 特征数据 / 恒流放电 / 健康状态

Key words

lithium-ion battery / battery cluster / information entropy / characteristic data / constant current discharge / health state

引用本文

导出引用
夏向阳, 岳家辉, 张媛, 夏天, 王明琦. 基于特征数据信息熵的锂离子储能电站电芯健康状态评估与预测方法研究[J]. 太阳能学报. 2025, 46(2): 78-89 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1653
Xia Xiangyang, Yue Jiahui, Zhang Yuan, Xia Tian, Wang Mingqi. SOH ESTIMATION AND PREDICTION METHOD FOR CELLS OF LITHIUM-ION ENERGY STORAGE POWER STATION BASED ON INFORMATION ENTROPY OF CHARACTERISTIC DATA[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 78-89 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1653
中图分类号: TM912   

参考文献

[1] 郭苏, 何意, 阿依努尔·库尔班, 等. 基于多储能技术经济性比较的可再生能源发电系统多目标容量优化[J]. 太阳能学报, 2022, 43(10): 424-431.
GUO S, HE Y, AYNUR KURBAN, et al.Multi-objective capacity optimization of renewable energy power system considering techno-economic comparisons of various energy storage technologies[J]. Acta energiae solaris sinica, 2022, 43(10): 424-431.
[2] 邓子豪, 夏向阳, 张嘉诚. 磷酸铁锂电池优化多因子状态在线评估方法[J]. 电网与清洁能源, 2022, 38(3): 90-96.
DENG Z H, XIA X Y, ZHANG J C.An optimized multi-factor online assessment method of SOH for LiFePO4 batteries[J]. Power system and clean energy, 2022, 38(3): 90-96.
[3] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[4] 吴岩, 田培根, 肖曦, 等. 基于前兆信息的可重构梯次电池储能系统安全风险评估[J]. 太阳能学报, 2022, 43(4): 36-45.
WU Y, TIAN P G, XIAO X, et al.Security risk assessment of reconfigurable secondary battery energy storage system based on precursor information[J]. Acta energiae solaris sinica, 2022, 43(4): 36-45.
[5] 朱志祥. 基于内阻模型的锂电池健康状态评价[D]. 绵阳: 西南科技大学, 2020.
ZHU Z X.Health evaluation of lithium battery based on internal resistance model[D]. Mianyang: Southwest University of Science and Technology, 2020.
[6] 董鹏, 张剑波, 王震坡. 基于电化学阻抗谱的锂离子电池析锂检测方法[J]. 汽车安全与节能学报, 2021, 12(4): 570-579.
DONG P, ZHANG J B, WANG Z P.Lithium plating identification based on electrochemical impedance spectra of lithium ion batteries[J]. Journal of automotive safety and energy, 2021, 12(4): 570-579.
[7] 董明, 范文杰, 刘王泽宇, 等. 基于特征频率阻抗的锂离子电池健康状态评估[J]. 中国电机工程学报, 2022, 42(24): 9094-9105.
DONG M, FAN W J, LIU W Z Y, et al. Health assessment of lithium-ion batteries based on characteristic frequency impedance[J]. Proceedings of the CSEE, 2022, 42(24): 9094-9105.
[8] LIU X T, LI K, WU J, et al.An extended Kalman filter based data-driven method for state of charge estimation of Li-ion batteries[J]. Journal of energy storage, 2021, 40: 102655.
[9] LIN C, MU H, XIONG R, et al.A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm[J]. Applied energy, 2016, 166: 76-83.
[10] DU J N, LIU Z T, WANG Y Y, et al.An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles[J]. Control engineering practice, 2016, 54: 81-90.
[11] XIONG R, LI L L, TIAN J P.Towards a smarter battery management system: a critical review on battery state of health monitoring methods[J]. Journal of power sources, 2018, 405: 18-29.
[12] 韦海燕, 陈孝杰, 吕治强, 等. 灰色神经网络模型在线估算锂离子电池SOH[J]. 电网技术, 2017, 41(12): 4038-4044.
WEI H Y, CHEN X J, LYU Z Q, et al.Online estimation of lithium-ion battery state of health using grey neural network[J]. Power system technology, 2017, 41(12): 4038-4044.
[13] 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968-3978.
GUO Y F, HUANG K, LI Z G.Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978.
[14] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119.
LI C R, XIAO F, FAN Y X, et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119.
[15] MIYATAKE S, SUSUKI Y, HIKIHARA T, et al.Discharge characteristics of multicell lithium-ion battery with nonuniform cells[J]. Journal of power sources, 2013, 241: 736-743.
[16] 李美成, 梅文明, 刘永强, 等. 基于改进负载潮流熵指标准确辨识电网脆性支路的方法[J]. 电网技术, 2019, 43(3): 1026-1033.
LI M C, MEI W M, LIU Y Q, et al.Accurate identification method of brittle branches in power grid based on improved load flow entropy indexes[J]. Power system technology, 2019, 43(3): 1026-1033.
[17] 严干贵, 李洪波, 段双明, 等. 基于模型参数辨识的储能电池状态估算[J]. 中国电机工程学报, 2020, 40(24): 8145-8154, 8251.
YAN G G, LI H B, DUAN S M, et al.Energy storage battery state estimation based on model parameter identification[J]. Proceedings of the CSEE, 2020, 40(24): 8145-8154, 8251.
[18] 余毫. 磷酸铁锂储能电池热行为模拟分析[D]. 北京: 华北电力大学, 2022.
YU H.Simulation analysis of thermal behavior of ferrous lithium phosphate energy storage battery[D]. Beijing: North China Electric Power University, 2022.
[19] SCHUSTER S F, BRAND M J, BERG P, et al.Lithium-ion cell-to-cell variation during battery electric vehicle operation[J]. Journal of power sources, 2015, 297: 242-251.

基金

国家自然科学基金(51977014); 湖南省研究生科研创新项目(CX20220917)

PDF(4983 KB)

Accesses

Citation

Detail

段落导航
相关文章

/