考虑梯次储能由不同健康状态的退役电池构成,基于梯次储能系统中电池组的荷电状态和健康状态提出一种功率分配优化策略。该策略计及不同健康状态电池组的寿命衰减对梯次储能系统寿命衰减的影响,基于电池组荷电状态和健康状态,考虑二者对电池组充放电能力影响的权重,通过对电池组充放电排序以实现最终的功率分配。首先,基于所构建梯次储能系统循环寿命衰减模型计算电池组的寿命衰减;然后,提出3种由电池组寿命衰减来计算梯次储能系统寿命衰减的计算方式,最后,以梯次储能系统寿命衰减最小为目标函数求解充放电排序策略中的权重值,实现不同电池组间的功率分配。在算例中通过与传统功率均分策略作比较,证明所提策略的优越性,并对所提的3种方式的优缺点进行对比分析。
Abstract
Considering that echelon energy storage system is composed of retired batteries with varying health conditions, this study proposes an optimized power distribution strategy based on the state of charge and state of health of battery groups within the system. The strategy takes into account the influence of different health status battery groups on the overall lifespan degradation of the echelon energy storage system. It weighs the effects of both state of charge and state of health on the charging and discharging capabilities of battery groups, ultimately achieving power distribution through a ranking of battery group charging and discharging sequences. First, based on the constructed cycle life degradation model for the echelon energy storage system, we compute the life degradation of individual battery groups. Then, three methods are presented to estimate the life degradation of the echelon energy storage system based on the computed life degradation of its battery groups. At last, with the aim of minimizing the life degradation of the echelon energy storage system, the weight values within the charging and discharging ranking strategy are determined by solving an optimization problem, thus enabling power distribution among distinct battery groups. Example analysis demonstrate the superiority of the proposed strategy compared to traditional equal power sharing methods. Furthermore, a comparative
关键词
电池储能 /
能量管理 /
生命周期 /
退役电池 /
梯次储能系统
Key words
battery energy storage /
energy management /
life cycle /
retired battery /
echelon energy storage system
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SANZ-GORRACHATEGUI I, PASTOR-FLORES P, PAJOVIC M, et al.Remaining useful life estimation for LFP cells in second-life applications[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 2505810.
[2] 李建林, 李雅欣, 吕超, 等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化, 2020, 44(13): 172-183.
LI J L, LI Y X, LYU C, et al.Key technology and research status of cascaded utilization in decommissioned power battery[J]. Automation of electric power systems, 2020, 44(13): 172-183.
[3] 颜宁, 李相俊, 张博, 等. 基于电池健康度的微电网群梯次利用储能系统容量配置方法[J]. 电网技术, 2020, 44(5): 1630-1638.
YAN N, LI X J, ZHANG B, et al.Energy storage capacity allocation method with cascade utilization based on battery health in microgrids[J]. Power system technology, 2020, 44(5): 1630-1638.
[4] 李笑竹, 陈来军, 杜锡力, 等. 考虑退役动力电池衰减特性的集中式共享储能分级协调控制策略[J]. 太阳能, 2022(5): 87-95.
LI X Z, CHEN L J, DU X L, et al.Hierarchical coordinated control strategy of centralized shared energy storage considering attenuation characteristics of retired power batteries[J]. Solar energy, 2022(5): 87-95.
[5] 于璐, 张辉, 田培根, 等. 一种退役动力电池梯次利用储能系统安全评估方法[J]. 太阳能学报, 2022, 43(5): 446-453.
YU L, ZHANG H, TIAN P G, et al.A battery safety evaluation method for reuse of retired power battery in energy storage system[J]. Acta energiae solaris sinica, 2022, 43(5): 446-453.
[6] 颜宁, 李相俊, 钟瑶, 等. 基于静动态一致性的退役动力电池模组阶梯式筛选方法[J]. 中国电机工程学报, 2023, 43(5): 2060-2070.
YAN N, LI X J, ZHONG Y, et al.Stepwise screening method for retired power battery modules based on static-dynamic consistency[J]. Proceedings of the CSEE, 2023, 43(5): 2060-2070.
[7] 马速良, 李建林, 李雅欣, 等. 面向电池梯次利用筛选需求的定制化聚类优化方法[J]. 中国电机工程学报, 2022, 42(17): 6208-6220.
MA S L, LI J L, LI Y X, et al.Customized clustering optimization method for battery reutilization screening requirements[J]. Proceedings of the CSEE, 2022, 42(17): 6208-6220.
[8] 李培强, 李雄, 蔡笋, 等. 风电场含退役动力电池的混合储能系统容量优化配置[J]. 太阳能学报, 2022, 43(5): 492-498.
LI P Q, LI X, CAI S, et al.Capacity optimization configuration of hybrid energy storage system with retired power batteries in wind farms[J]. Acta energiae solaris sinica, 2022, 43(5): 492-498.
[9] 马玲, 魏成伟, 谢丽蓉, 等. 基于退役动力电池的风储有功功率协调控制策略[J]. 太阳能学报, 2021, 42(10): 437-443.
MA L, WEI C W, XIE L R, et al.Coordinated control strategy for wind storage active power of decommissioned power battery[J]. Acta energiae solaris sinica, 2021, 42(10): 437-443.
[10] 郑永强, 吴越, 张盼盼, 等. 基于多分支拓扑的梯次利用储能系统电池同期退役协同控制策略[J]. 储能科学与技术, 2021, 10(6): 2283-2292.
ZHENG Y Q, WU Y, ZHANG P P, et al.Research on collaborative control strategy for simultaneous decommissioning based on multi-branch PCS topology of ESS using second-life EV batteries[J]. Energy storage science and technology, 2021, 10(6): 2283-2292.
[11] 李相俊, 马锐. 考虑电池组健康状态的储能系统能量管理方法[J]. 电网技术, 2020, 44(11): 4210-4217.
LI X J, MA R.Energy management method of energy storage system considering the SOH of battery pack[J]. Power system technology, 2020, 44(11): 4210-4217.
[12] SAXENA S, HENDRICKS C, PECHT M.Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges[J]. Journal of power sources, 2016, 327: 394-400.
[13] CHEN L J, QIAN K J, QIN M, et al.A configuration-control integrated strategy for electric bus charging station with echelon battery system[J]. IEEE transactions on industry applications, 2020, 56(5): 6019-6028.
[14] 王育飞, 叶俊斌, 薛花, 等. 基于改进雨流计数法的梯次利用电池储能系统优化控制[J]. 电力系统自动化, 2022, 46(8): 39-49.
WANG Y F, YE J B, XUE H, et al.Optimal control for energy storage system with echelon utilization batteries based on improved rain-flow counting method[J]. Automation of electric power systems, 2022, 46(8): 39-49.
[15] 蒋荟, 杨晓华. 实时雨流计数法的“三变程” 计数原则[J]. 航空计算技术, 2008, 38(5): 5-7.
JIANG H, YANG X H.Three-range rule of real-time rain-flow counting method[J]. Aeronautical computing technique, 2008, 38(5): 5-7.
[16] 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948.
YAN X W, DENG H R, GUO Q, et al.Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948.
基金
国家自然科学基金青年项目(52207091)