基于穿越可视图和图同构网络的风电传动系统故障诊断方法

周忠志, 邓艾东, 刘东瀛, 刘洋, 胡沁怡, 饶朗

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 591-599.

PDF(4824 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4824 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 591-599. DOI: 10.19912/j.0254-0096.tynxb.2023-1670

基于穿越可视图和图同构网络的风电传动系统故障诊断方法

  • 周忠志1,2, 邓艾东1,2, 刘东瀛3, 刘洋1,2, 胡沁怡1,2, 饶朗1,2
作者信息 +

FAULT DIAGNOSIS METHOD FOR WIND POWER TRANSMISSION SYSTEM BASED ON PENETRABLE VISIBILITY GRAPH AND GRAPH ISOMORPHISM NETWORKS

  • Zhou Zhongzhi1,2, Deng Aidong1,2, Liu Dongying3, Liu Yang1,2, Hu Qinyi1,2, Rao Lang1,2
Author information +
文章历史 +

摘要

为解决实际工程应用中风电机组传动系统在小样本情况下的故障诊断困难问题,提出一种基于穿越可视图和图同构网络的旋转机械故障诊断方法。首先,利用有限穿越可视图算法将时间序列信号数据转换为图结构数据,并对连接边进行加权;然后,将加权图数据输入到网络模型中进行训练,模型引入自注意力机制以实现适应性建模并提高模型的泛化能力;最后,利用Softmax分类器实现故障诊断任务。实验结果表明所提方法能在极限小样本数量下取得较好的故障诊断效果。

Abstract

To address the difficulty in fault diagnosis of wind turbine transmission systems with limited samples, a novel fault diagnosis approach for rotating machinery is proposed, which leverages the Penetrable Visibility Graph and Graph Isomorphism Network. Initially, the time series signal data is transformed into graph-structured data using the penetrable visibility graph algorithm with limited depth, and the resulting connecting edges are then weighted. Subsequently, the weighted graph data is fed into a network model for training. Specifically, the model integrates a self-attention mechanism to enable adaptive modeling, thereby improving its generalization ability. Finally, a Softmax classifier is employed for fault pattern recognition. Experimental results demonstrate the effectiveness of the proposed method in achieving robust fault diagnosis performance, especially in scenarios with an extremely limited number of samples.

关键词

风电机组 / 故障诊断 / 小样本 / 图同构网络 / 穿越可视图

Key words

wind turbines / fault diagnosis / small sample / graph isomorphism network / penetrable visibility graph

引用本文

导出引用
周忠志, 邓艾东, 刘东瀛, 刘洋, 胡沁怡, 饶朗. 基于穿越可视图和图同构网络的风电传动系统故障诊断方法[J]. 太阳能学报. 2025, 46(2): 591-599 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1670
Zhou Zhongzhi, Deng Aidong, Liu Dongying, Liu Yang, Hu Qinyi, Rao Lang. FAULT DIAGNOSIS METHOD FOR WIND POWER TRANSMISSION SYSTEM BASED ON PENETRABLE VISIBILITY GRAPH AND GRAPH ISOMORPHISM NETWORKS[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 591-599 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1670
中图分类号: TH133.33   

参考文献

[1] GE Y, ZHANG F S, REN Y.Adaptive fault diagnosis method for rotating machinery with unknown faults under multiple working conditions[J]. Journal of manufacturing systems, 2022, 63: 177-184.
[2] 刘洋, 程强, 史曜炜, 等. 基于注意力模块及1D-CNN的滚动轴承故障诊断[J]. 太阳能学报, 2022, 43(3): 462-468.
LIU Y, CHENG Q, SHI Y W, et al.Fault diagnosis of rolling bearings based on attention module and 1D-CNN[J]. Acta energiae solaris sinica, 2022, 43(3): 462-468.
[3] 孙海蓉, 李号. 基于深度迁移学习的小样本光伏热斑识别方法[J]. 太阳能学报, 2022, 43(1): 406-411.
SUN H R, LI H.Photovoltaic hot spot identification method for small sample based on deep transfer learning[J]. Acta energiae solaris sinica, 2022, 43(1): 406-411.
[4] 焦瀚晖, 胡明辉, 江志农, 等. 基于补偿距离评估和一维卷积神经网络的离心泵故障快速智能识别方法[J]. 振动与冲击, 2021, 40(10): 41-49.
JIAO H H, HU M H, JIANG Z N, et al.Fast and intelligent identification method for faults of a centrifugal pump based on the compensation distance evaluation and one-dimensional convolution neural network[J]. Journal of vibration and shock, 2021, 40(10): 41-49.
[5] YAN H M, MU H N, YI X J, et al.Fault diagnosis of rolling bearing with small samples based on wavelet packet theory and random forest[C]//2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). Beijing, China, 2019: 305-310.
[6] ZHANG H, GUO X Q, ZHANG P J.Improved PSO-SVM-based fault diagnosis algorithm for wind power converter[C]//2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). Beijing, China, 2022: 1213-1216.
[7] DONNER R, NORBERT M, YONG Z, et al.Nonlinear time series analysis by means of complex networks[J]. Scientia sinica physica, mechanica & astronomica, 2020, 50(1): 010509.
[8] GAO Y Y, CHEN M, YU D J.Semi-supervised graph convolutional network and its application in intelligent fault diagnosis of rotating machinery[J]. Measurement, 2021, 186: 110084.
[9] 刘颉, 杨超颖, 周凯波. 基于图数据深度挖掘的旋转机械故障诊断[J]. 华中科技大学学报(自然科学版), 2021, 49(9): 1-5.
LIU J, YANG C Y, ZHOU K B.Fault diagnosis of rotating machinery based on graph data deep mining[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2021, 49(9): 1-5.
[10] 曹洁, 陈泽阳, 王进花, 等. 基于PGAT模型的氧气顶吹转炉小样本故障诊断[J]. 控制与决策, 2023, 38(10): 2943-2952.
CAO J, CHEN Z Y, WANG J H, et al.Fault diagnosis of small sample of oxygen top-blowing converter based on PGAT model[J]. Control and decision, 2023, 38(10): 2943-2952.
[11] LACASA L, LUQUE B, BALLESTEROS F, et al.From time series to complex networks: The visibility graph[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4972-4975.
[12] LUQUE B, LACASA L, BALLESTEROS F, et al.Horizontal visibility graphs: Exact results for random time series[J]. Physical review E, 2009, 80(4): 046103.
[13] DING Y, CHONG Y W, PAN S M, et al.Spatial-spectral unified adaptive probability graph convolutional networks for hyperspectral image classification[J]. IEEE transactions on neural networks and learning systems, 2023, 34(7): 3650-3664.
[14] ZHANG D C, STEWART E, ENTEZAMI M, et al.Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network[J]. Measurement, 2020, 156: 107585.
[15] XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks? [EB/OL].2018: 1810.00826.https://arxiv.org/abs/1810.00826v3.
[16] LI C Y, MO L F, YAN R Q.Fault diagnosis of rolling bearing based on WHVG and GCN[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 3519811.
[17] YANG C H, XIA Y S, CHU Z F, et al.Logic synthesis optimization sequence tuning using RL-based LSTM and graph isomorphism network[J]. IEEE transactions on circuits and systems Ⅱ: express briefs, 2022, 69(8): 3600-3604.
[18] 高忠科, 胡沥丹, 周婷婷, 等. 两相流有限穿越可视图演化动力学研究[J]. 物理学报, 2013, 62(11): 124-134.
GAO Z K, HU L D, ZHOU T T, et al.Limited penetrable visibility graph from two-phase flow for investigating flow pattern dynamics[J]. Acta physica sinica, 2013, 62(11): 124-134.
[19] 张勰, 肖恩媛, 刘宏志, 等. 基于有限穿越可视图的进场航班流量波动特性研究[J]. 交通运输系统工程与信息, 2022, 22(6): 244-257.
ZHANG X, XIAO E Y, LIU H Z, et al.Fluctuation characteristics of arrival flight flow based on limited penetrable visibility graph[J]. Journal of transportation systems engineering and information technology, 2022, 22(6): 244-257.
[20] 黄玲, 李林霞, 程瑜, 等. 基于SAM-WGAN-GP的短期风电功率预测[J]. 太阳能学报, 2023, 44(4): 180-188.
HUANG L, LI L X, CHENG Y, et al.Short-term wind power prediction based on SAM-WGAN-GP[J]. Acta energiae solaris sinica, 2023, 44(4): 180-188.
[21] LI T F, ZHOU Z, LI S N, et al.The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study[J]. Mechanical systems and signal processing, 2022, 168: 108653.
[22] 余萍, 曹洁. 优化堆叠降噪自动编码器滚动轴承故障诊断[J]. 太阳能学报, 2021, 42(11): 307-314.
YU P, CAO J.Optimized stacked denoising auto-encoders(SDAE)-based fault diagnosis of rolling bearing[J]. Acta energiae solaris sinica, 2021, 42(11): 307-314.

基金

江苏省碳达峰碳中和科技创新专项资金(BA2022214); 国家重点研发计划(2022YFB4100403); 中央高校基本科研业务费专项(2242023K30011; 2242023K30058)

PDF(4824 KB)

Accesses

Citation

Detail

段落导航
相关文章

/