基于DOD-LN-GPR模型的锂离子电池SOH估计方法

黄佳茵, 白俊琦, 贤燕华

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 60-69.

PDF(1743 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1743 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 60-69. DOI: 10.19912/j.0254-0096.tynxb.2023-1683

基于DOD-LN-GPR模型的锂离子电池SOH估计方法

  • 黄佳茵, 白俊琦, 贤燕华
作者信息 +

SOH ESTIMATION METHOD OF LITHIUM-ION BATTERIES BASED ON DOD-LN-GPR MODEL

  • Huang Jiayin, Bai Junqi, Xian Yanhua
Author information +
文章历史 +

摘要

针对锂离子电池健康状态(SOH)的估计中预测精度不高、健康特征输入冗余、数据预处理繁琐的问题,提出一种基于放电深度(DOD)的改进高斯过程回归SOH预测模型。在锂离子电池的放电曲线中,计算出锂离子电池的放电深度,并将其作为唯一的健康特征。同时改进传统的高斯过程回归(GPR)算法,利用线性(LIN)和神经网络(NN)的组合核函数(LIN+NN)拟合锂离子电池容量全局衰退和局部波动的趋势,从而建立DOD-LN-GPR锂离子电池SOH估计模型。在NASA数据集中,首先进行不同核函数的实验比对,验证所提组合核函数预测精度的优势;其次,通过减小训练集与测试集比例,证明所提估计方法在少量训练样本上仍能有较好的预测效果;最后,将所提DOD-LN-GPR模型在不同训练集下与其他SOH估计模型进行对比,结果表明该模型具有较好的精度和鲁棒性。

Abstract

To address the issues of low prediction accuracy, redundant health feature inputs, and cumbersome data preprocessing in the estimation of the State of Health (SOH) of Lithium-ion batteries, an improved SOH prediction model of Gaussian process regression based on depth of discharge (DOD) is proposed. In the discharge curve of the lithium battery, the discharge depth of the lithium-ion battery is calculated and taken as the only health feature. At the same time, the traditional Gaussian process regression (GPR) algorithm is improved, and the combined kernel function (LIN+NN) of linear (LIN) and neural network (NN) is used to fit the trend of global decline and local fluctuation of lithium-ion battery capacity, and the DOD-LN-GPR lithium-ion battery SOH estimation model is established. In the NASA data set, the experimental comparison of different kernel functions is carried out to verify the superiority of the prediction accuracy of the proposed combined kernel functions. Then, by reducing the ratio of training set to test set, it is proved that the proposed estimation method can still have good prediction effect on a small number of training samples. Finally, the proposed DOD-LN-GPR model is compared with other SOH estimation models under different training sets, and the results show that the model has better accuracy and robustness.

关键词

锂离子电池 / 状态估计 / 电池管理系统 / 高斯过程回归 / 放电深度

Key words

lithium-ion batteries / state estimation / battery management systems / Gaussian process regression / depth of discharge

引用本文

导出引用
黄佳茵, 白俊琦, 贤燕华. 基于DOD-LN-GPR模型的锂离子电池SOH估计方法[J]. 太阳能学报. 2025, 46(2): 60-69 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1683
Huang Jiayin, Bai Junqi, Xian Yanhua. SOH ESTIMATION METHOD OF LITHIUM-ION BATTERIES BASED ON DOD-LN-GPR MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 60-69 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1683
中图分类号: TK02   

参考文献

[1] NITTA N, WU F, LEE J T, et al.Li-ion battery materials: present and future[J]. Materials today, 2015, 18(5): 252-264.
[2] NOTTER D A, GAUCH M, WIDMER R, et al.Contribution of Li-ion batteries to the environmental impact of electric vehicles[J]. Environmental science & technology, 2010, 44(17): 6550-6556.
[3] BHATT M D, ODWYER C.Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes[J]. Physical chemistry chemical physics, 2015, 17(7): 4799-4844.
[4] 王博, 胡兵, 王小娟. 动力电池支撑架结构设计及散热性能分析[J]. 太阳能学报, 2022, 43(5): 454-460.
WANG B, HU B, WANG X J.Power battery support frame structure design and analysis of heat dissipation performance[J]. Acta energiae solaris sinica, 2022, 43(5): 454-460.
[5] WEI J, DONG G, CHEN Z.Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE transactions on industrial electronics, 2018, 65(7): 5634-5643.
[6] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[7] LIN C, TANG A, WANG W.A review of SOH estimation methods in lithium-ion batteries for electric vehicle applications[J]. Energy procedia, 2015, 75: 1920-1925.
[8] NOURA N, BOULON L, JEMEÏ S.A review of battery state of health estimation methods: hybrid electric vehicle challenges[J]. World electric vehicle journal, 2020, 11(4): 66.
[9] XU X, WU D, YANG L, et al.State estimation of lithium batteries for energy storage based on dual extended Kalman filter[J]. Mathematical problems in engineering, 2020, 2020: 6096834.
[10] HE J, WEI Z, BIAN X, et al.State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J]. IEEE transactions on transportation electrification, 2020, 6(2): 417-426.
[11] AMIRI M, TORABI F.A computationally efficient model for performance prediction of lithium-ion batteries[J]. Sustainable energy technologies and assessments, 2021, 43: 100938.
[12] LIN M Q, WU J, MENG J H, et al.State of health estimation with attentional long short-term memory network for lithium-ion batteries[J]. Energy, 2023, 268: 126706.
[13] WU J, ZHANG C B, CHEN Z H.An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied energy, 2016, 173: 134-140.
[14] DENG Z W, HU X S, LIN X K, et al.General discharge voltage information enabled health evaluation for lithium-ion batteries[J]. IEEE/ASME transactions on mechatronics, 2020, 26(3): 1295-1306.
[15] 魏梓轩, 韩晓娟, 李炫. 基于深度神经网络的梯次利用电池健康状态评估[J]. 太阳能学报, 2022, 43(5): 518-524.
WEI Z X, HAN X J, LI X.State of health assessment for echelon utilization batteries based on deep neural network[J]. Acta energiae solaris sinica, 2022, 43(5): 518-524.
[16] CHEMALI E, KOLLMEYER P J, PREINDL M, et al.Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries[J]. IEEE transactions on industrial electronics, 2018, 65(8): 6730-6739.
[17] HUANG K, GUO Y F, LI S M.Estimation of maximum available capacity of lithium-ion battery based on multi-view features extracted from reconstructed charging curve[J]. International journal of hydrogen energy, 2022, 47(44): 19175-19194.
[18] JIN H Y, CUI N M, CAI L, et al.State-of-health estimation for lithium-ion batteries with hierarchical feature construction and auto-configurable Gaussian process regression[J]. Energy, 2023, 262: 125503.
[19] YU Z L, LIU N, ZHANG Y K, et al.Battery SOH prediction based on multi-dimensional health indicators[J]. Batteries, 2023, 9(2): 80.
[20] XU T T, PENG Z, LIU D G, et al.A hybrid drive method for capacity prediction of lithium-ion batteries[J]. IEEE transactions on transportation electrification, 2021, 8(1): 1000-1012.
[21] YANG D, ZHANG X, PAN R, et al.A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of power sources, 2018, 384: 387-395.
[22] LIN C P, XU J, SHI M J, et al.Constant current charging time based fast state-of-health estimation for lithium-ion batteries[J]. Energy, 2022, 247: 123556.
[23] LIU J Z, LIU X T.An improved method of state of health prediction for lithium batteries considering different temperature[J]. Journal of energy storage, 2023, 63: 107028.
[24] WANG J W, DENG Z W, YU T, et al.State of health estimation based on modified Gaussian process regression for lithium-ion batteries[J]. Journal of energy storage, 2022, 51: 104512.
[25] GOH H H, LAN Z T, ZHANG D D, et al.Estimation of the state of health (SOH) of batteries using discrete curvature feature extraction[J]. Journal of energy storage, 2022, 50: 104646.
[26] NG K S, MOO C S, CHEN Y P, et al.Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J]. Applied energy, 2009, 86(9): 1506-1511.
[27] YU J.State of health prediction of lithium-ion batteries: multiscale logic regression and Gaussian process regression ensemble[J]. Reliability engineering & system safety, 2018, 174: 82-95.
[28] LI X Y, YUAN C G, LI X H, et al.State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190: 116467.
[29] RICHARDSON R R, OSBORNE M A, HOWEY D A.Gaussian process regression for forecasting battery state of health[J]. Journal of power sources, 2017, 357: 209-219.
[30] WEN J, CHEN X, LI X, et al.SOH prediction of lithium battery based on IC curve feature and BP neural network[J]. Energy, 2022, 261: 125234.

基金

国家自然科学基金(6197022931)

PDF(1743 KB)

Accesses

Citation

Detail

段落导航
相关文章

/