基于CaO原位与非原位CO2捕集的煤底灰催化生物质气化制氢工艺模拟

张传昊, 刘吉, 傅国志, 胡斌, 马宗虎, 杜小泽

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 1-9.

PDF(2857 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2857 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 1-9. DOI: 10.19912/j.0254-0096.tynxb.2023-1684

基于CaO原位与非原位CO2捕集的煤底灰催化生物质气化制氢工艺模拟

  • 张传昊1, 刘吉1, 傅国志2, 胡斌1, 马宗虎2, 杜小泽3
作者信息 +

PROCESS SIMULATION OF COAL BOTTOM ASH-CATALYZED BIOMASS GASIFICATION COUPLING WITH EX-SITU AND IN-SITU CARBON CARPTURE FOR H2 PRODUCTION

  • Zhang Chuanhao1, Liu Ji1, Fu Guozhi2, Hu Bin1, Ma Zonghu2, Du Xiaoze3
Author information +
文章历史 +

摘要

使用Aspen Plus软件建立煤底灰催化生物质气化制氢模型,将其分别与非原位和原位的CO2捕集系统耦合,研究温度、压力、钙料比、水料比与煤底灰催化剂添加量对产品合成气组分与氢产率的影响。煤底灰有利于气化制氢,可显著提高H2产率。CaO非原位CO2捕集对生物质气化制氢的H2产率无影响,但能显著降低CO2排放,H2体积分数最高可达81.0%,H2产率最高可达106.0 g/kg。CaO原位吸收增强的制氢工艺能够促进生物质气化并将H2产率提高至110.5 g/kg,相应的H2体积分数为85.7%,但该工艺脱碳能力不及前者。基于平准化制氢成本,CaO原位吸收增强相比于CaO非原位CO2捕集具有更低的成本,且后者受制氢规模的影响更显著。

Abstract

The biomass gasification catalyzed by coal bottom ash for H2 production was studied by Aspen Plus software herein. The ex-situ and in-situ carbon capture was coupled with the catalytic gasification model. The effects of temperature, pressure, CaO/biomass ratio, steam/biomass ratio and addition ratio of coal bottom ash on the composition of syngas and the H2 yield were studied. As the results, coal bottom ash is beneficial for the H2 production from biomass gasification, and the H2 yield can be significantly increased by coal bottom ash. The ex-situ calcium looping almost does not affect the H2 yield but significantly reduces CO2 emission. The H2 volume fraction can be up to 81.0%, with a highest H2 yield of 106.0 g/kg. The H2 production technigue enhanced by in-situ CaO sorption promotes the biomass gasification reaction and raises the H2 yield up to 110.5 g/kg with an H2 volume fraction of 85.7%. Whereas, its decarbonization ability cannot match the former. According to the levelized cost of hydrogen, in-situ carbon capture has lower cost for H2 production, and the influence of scale is greater on the ex-situ calcium looping.

关键词

生物质能 / 气化 / 制氢 / CO2捕集 / 煤底灰 / 技术-经济性分析

Key words

biomass energy / gasification / hydrogen production / carbon capture / coal bottom ash / techno-economic analysis

引用本文

导出引用
张传昊, 刘吉, 傅国志, 胡斌, 马宗虎, 杜小泽. 基于CaO原位与非原位CO2捕集的煤底灰催化生物质气化制氢工艺模拟[J]. 太阳能学报. 2025, 46(2): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1684
Zhang Chuanhao, Liu Ji, Fu Guozhi, Hu Bin, Ma Zonghu, Du Xiaoze. PROCESS SIMULATION OF COAL BOTTOM ASH-CATALYZED BIOMASS GASIFICATION COUPLING WITH EX-SITU AND IN-SITU CARBON CARPTURE FOR H2 PRODUCTION[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1684
中图分类号: TK6   

参考文献

[1] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[2] VALIZADEH S, HAKIMIAN H, FAROOQ A, et al.Valorization of biomass through gasification for green hydrogen generation: a comprehensive review[J]. Bioresource technology, 2022, 365: 128143.
[3] HUSSAIN M, DENDENA TUF L, YUSUP S, et al.Characterization of coal bottom ash &its potential to be used as catalyst in biomass gasification[J]. Materials today: proceedings, 2019, 16: 1886-1893.
[4] LI J, CHANG G Z, SONG K, et al.Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity[J]. Renewable energy, 2023, 203: 434-444.
[5] LI R, YANG Z, DUAN Y Y.Energy, economic and environmental performance evaluation of co-gasification of coal and biomass negative-carbon emission system[J]. Applied thermal engineering, 2023, 231: 120917.
[6] YANG H Q, XU Z H, FAN M H, et al.Progress in carbon dioxide separation and capture: a review[J]. Journal of environmental sciences, 2008, 20(1): 14-27.
[7] REN S Y, FENG X, WANG Y F.Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system[J]. Renewable and sustainable energy reviews, 2021, 147: 111208.
[8] INAYAT A, KHAN Z, ASLAM M, et al.Integrated adsorption steam gasification for enhanced hydrogen production from palm waste at bench scale plant[J]. International journal of hydrogen energy, 2021, 46(59): 30581-30591.
[9] ABDULLAH S S, YUSUP S.Method for screening of Malaysian biomass based on aggregated matrix for hydrogen production through gasification[J]. Journal of applied sciences, 2010, 10(24): 3301-3306.
[10] SHAHBAZ M, YUSUP S, INAYAT A, et al.Application of response surface methodology to investigate the effect of different variables on conversion of palm kernel shell in steam gasification using coal bottom ash[J]. Applied energy, 2016, 184: 1306-1315.
[11] 郑志行, 张家元, 李谦, 等. 下吸式固定床的生物质H2O/CO2气化数值模拟研究[J]. 太阳能学报, 2022, 43(5): 377-382.
ZHENG Z H, ZHANG J Y, LI Q, et al.Numerical simulation research of biomass H2O/CO2 gasification in downdraft fixed bed[J]. Acta energiae solaris sinica, 2022, 43(5): 377-382.
[12] 郑志行, 张家元, 李俊宇, 等. 下吸式固定床的生物质O2/CO2分段气化流程模拟[J]. 太阳能学报, 2022, 43(6): 239-245.
ZHENG Z H, ZHANG J Y, LI J Y, et al.Process simulation of biomass O2/CO2 staged gasification in downdraft fixed bed[J]. Acta energiae solaris sinica, 2022, 43(6): 239-245.
[13] AHMED A M A, SALMIATON A, CHOONG T S Y, et al. Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus[J]. Renewable and sustainable energy reviews, 2015, 52: 1623-1644.
[14] ALI A M, SHAHBAZ M, INAYAT M, et al.Conversion of municipals waste into syngas and methanol via steam gasification using CaO as sorbent: an Aspen Plus modelling[J]. Fuel, 2023, 349: 128640.
[15] 兰维娟, 李惟毅, 陈冠益, 等. 基于Gibbs自由能最小化原理的生物质催化气化模拟[J]. 太阳能学报, 2014, 35(12): 2530-2534.
LAN W J, LI W Y, CHEN G Y, et al.Modeling of biomass catalyzing gasification based on minimization of Gibbs free energy[J]. Acta energiae solaris sinica, 2014, 35(12): 2530-2534.
[16] GASAFI E, REINECKE M Y, KRUSE A, et al.Economic analysis of sewage sludge gasification in supercritical water for hydrogen production[J]. Biomass and bioenergy, 2008, 32(12): 1085-1096.
[17] 孙勇. 城市生活垃圾气化制燃料的技术-环境-经济性分析[D]. 广州: 华南理工大学, 2022.
SUN Y.Technical-environmental-economic analysis of gasification of municipal solid waste to produce fuel[D]. Guangzhou: South China University of Technology, 2022.
[18] 王玉亭. 基于水电解和甲醇合成的可再生能源消纳系统热力性能及经济性分析[D]. 北京: 华北电力大学, 2022.
WANG Y T.Thermal performance and economic analysis of renewable energy consumption system based on water electrolysis and methanol synthesis[D]. Beijing: North China Electric Power University, 2022.
[19] SHAHBAZ M, YUSUP S, INAYAT A, et al.Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash[J]. Bioresource technology, 2017, 241: 284-295.
[20] SAMIMI F, MARZOUGHI T, RAHIMPOUR M R.Energy and exergy analysis and optimization of biomass gasification process for hydrogen production (based on air, steam and air/steam gasifying agents)[J]. International journal of hydrogen energy, 2020, 45(58): 33185-33197.
[21] ABBAS S Z, DUPONT V, MAHMUD T.Modelling of high purity H2 production via sorption enhanced chemical looping steam reforming of methane in a packed bed reactor[J]. Fuel, 2017, 202: 271-286.
[22] YUCEL O, AYDIN E S.Modeling of biomass-based hydrogen production via catalytic sorption-enhanced reformer integrated with a gasifier[J]. Journal of the Indian Chemical Society, 2023, 100(1): 100854.
[23] ALI A M, SHAHBAZ M, SHAHZAD K, et al.Polygeneration syngas and power from date palm waste steam gasification through an Aspen Plus process modeling[J]. Fuel, 2023, 332: 126120.
[24] WEI L Y, YANG H P, LI B, et al.Absorption-enhanced steam gasification of biomass for hydrogen production: effect of calcium oxide addition on steam gasification of pyrolytic volatiles[J]. International journal of hydrogen energy, 2014, 39(28): 15416-15423.
[25] NASSEF A M, SAYED E T, REZK H, et al.Developing a fuzzy-model with particle swarm optimization-based for improving the conversion and gasification rate of palm kernel shell[J]. Renewable energy, 2020, 166: 125-135.
[26] KENARSARI S D, ZHENG Y.CO2 capture using calcium oxide under biomass gasification conditions[J]. Journal of CO2 utilization, 2015, 9: 1-7.
[27] SUN Z, WANG T W, ZHANG R J, et al.Boosting hydrogen production via deoxygenation-sorption-enhanced biomass gasification[J]. Bioresource technology, 2023, 382: 129197.
[28] DIAS J A C, ASSAF J M. Influence of calcium content in Ni/CaO/γ-Al2O3 catalysts for CO2-reforming of methane[J]. Catalysis today, 2003, 85(1): 59-68.
[29] ALNOUSS A, PARTHASARATHY P, SHAHBAZ M, et al.Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS[J]. Applied energy, 2020, 261: 114350.
[30] SONG Y H, TIAN Y, ZHOU X, et al.Simulation of air-steam gasification of pine sawdust in an updraft gasification system for production of hydrogen-rich producer gas[J]. Energy, 2021, 226: 120380.
[31] WANG H M, REN R W, LIU B J, et al.Hydrogen production with an auto-thermal MSW steam gasification and direct melting system: a process modeling[J]. International journal of hydrogen energy, 2022, 47(10): 6508-6518.
[32] LIN B Q, WANG M.How to boost energy productivity in China’s industrial sector: an integrated decomposition framework based on multi-dimensional factors[J]. Journal of cleaner production, 2020, 259: 120902.
[33] 裴佳梅. 不同制氢技术经济-能源-环境-社会综合效益评价研究[D]. 太原: 山西财经大学, 2023.
PEI J M.Study on evaluation of comprehensive economic-energy-environmental-social benefits of different hydrogen production technologies[D]. Taiyuan: Shanxi University of Finance & Economics, 2023.

基金

国家自然科学基金(52376182); 江苏省自然科学基金(BK20221248); 华电集团重点科技课题(CHDKJ22-01-56)

PDF(2857 KB)

Accesses

Citation

Detail

段落导航
相关文章

/