基于多策略混合鲸鱼-蚁群优化算法的装配序列优化

黎响, 王永, 田德

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 565-575.

PDF(1986 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1986 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 565-575. DOI: 10.19912/j.0254-0096.tynxb.2023-1695

基于多策略混合鲸鱼-蚁群优化算法的装配序列优化

  • 黎响, 王永, 田德
作者信息 +

ASSEMBLY SEQUENCE OPTIMIZATION BASED ON EOBSWOA-ACO ALGORITHM

  • Li Xiang, Wang Yong, Tian De
Author information +
文章历史 +

摘要

装配序列规划(ASP)是风电机组设计和制造的关键内容,对产品的生产效率和成本有重要影响。SP问题是一个典型的NP完全问题,需使用有效的方法来搜索最优或近优的装配序列,但常用智能优化算法的参数值获取比较困难,导致在搜索效率和收敛精度上存在一定局限性。为此,提出一种求解SP问题的多策略混合鲸鱼-蚁群优化算法。在计算过程中,使用增加精英反向学习策略(OBL)、差分进化算法(DE)的多策略混合鲸鱼算法优化蚁群算法的参数,然后再采用蚁群算法搜索最优或近优的装配序列。计算实验表明:多策略混合鲸鱼-蚁群优化算法降低了参数设置的复杂性,在求解SP问题上,与传统蚁群算法相比,算法的收敛速度和寻优能力得到很大提高。

Abstract

Ssembly sequence planning (SP) is the key content of wind turbine design and manufacturing, which has an important impact on the production efficiency and cost. SP problem is a typical NP-complete problem, which needs to use effective methods to find the optimal or near-optimal assembly sequences. However, it is difficult to obtain the parameter values of the general intelligent optimization algorithms, which leads to the limitations of these algorithms on search efficiency and convergence accuracy. To tackle the problem, a multi-strategy hybrid whale-ant colony optimization algorithm for SP problem is proposed. In the calculation process, the parameters of the ant colony algorithm are optimized by the multi-strategy hybrid whale algorithm, which adds the elite reverse learning strategy and differential evolution (DE) algorithm, and then the ant colony algorithm is used to search the optimal or near-optimal assembly sequence. Computational experiments show that the multi-strategy hybrid whale-ant colony optimization algorithm reduces the complexity of parameter setting. Compared with the traditional ACO, the convergence speed and optimization ability of the algorithm are greatly improved in solving SP problems.

关键词

装配序列规划 / 风电机组 / 参数 / 多策略混合鲸鱼-蚁群算法

Key words

assembly sequence planning / wind turbines / parameter / multi-strategy hybrid whale-ant colony optimization algorithm

引用本文

导出引用
黎响, 王永, 田德. 基于多策略混合鲸鱼-蚁群优化算法的装配序列优化[J]. 太阳能学报. 2025, 46(2): 565-575 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1695
Li Xiang, Wang Yong, Tian De. ASSEMBLY SEQUENCE OPTIMIZATION BASED ON EOBSWOA-ACO ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 565-575 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1695
中图分类号: TK83   

参考文献

[1] BOOTHROYD G, DEWHURST P, KNIGHT W A.Product Design for Manufacture and Ssembly[M]. Florida:CRC Press, 2010.
[2] TSENG Y J, CHEN J Y, HUANG F Y.A multi-plant Ssembly sequence planning model with integrated Ssembly sequence planning and plant Ssignment using GA[J]. The international journal of advanced manufacturing technology, 2010, 48(1): 333-345.
[3] 许志杰, 边骥轩, 何其昌. 基于特征语义的装配序列规划预处理方法[J]. 机械设计与研究, 2023, 39(4): 131-134, 140.
XU Z J, BIAN J X, HE Q C.A preprocessing method for Ssembly sequence planning based on feature semantics[J]. Machine design & research, 2023, 39(4): 131-134, 140.
[4] 陈继文, 张迁龙, 魏文胜, 等. 基于BP神经网络的装配序列规划[J]. 机械设计与制造工程, 2023, 52(2): 45-50.
CHEN J W, ZHANG Q L, WEI W S, et al.The Ssembly sequence planning based on BP neural network[J]. Machine design and manufacturing engineering, 2023, 52(2): 45-50.
[5] 印宇珂, 郑银环, 周斌, 等. 基于拆卸法的SA-GA混合算法的装配规划研究[J]. 现代制造工程, 2023(5): 15-21, 57.
YIN Y K, ZHENG Y H, ZHOU B, et al.Research on asembly planning of SA-GA hybrid algorithm based on dissembly method[J]. Modern manufacturing engineering, 2023(5): 15-21, 57.
[6] 何磊, 李涛, 张世炯, 等. 基于扩展Petri网的复杂装配线建模[J]. 航空制造技术, 2021, 64(16): 58-64.
HE L, LI T, ZHANG S J, et al.Modelling for complicated Ssembly line based on extended petri net[J]. Aeronautical manufacturing technology, 2021, 64(16): 58-64.
[7] KESAVAN V, KAMALAKANNAN R, SUDHAKARAPANDIAN R, et al.Heuristic and meta-heuristic algorithms for solving medium and large scale sized cellular manufacturing system NP-hard problems: a comprehensive review[J]. Materials today: proceedings, 2020, 21: 66-72.
[8] LI X, SHANG J Z, CAO Y J.An efficient method of automatic Ssembly sequence planning for aerospace industry based on genetic algorithm[J]. The international journal of advanced manufacturing technology, 2017, 90(5): 1307-1315.
[9] 李国庆, 翟晓娟, 李扬, 等. 基于改进蚁群算法的微电网多目标模糊优化运行[J]. 太阳能学报, 2018, 39(8): 2310-2317.
LI G Q, ZHAI X J, LI Y, et al.Multi-objective fuzzy optimization operation of micro-grid based on improved ant colony algorithm[J]. Acta energiae solaris sinica, 2018, 39(8): 2310-2317.
[10] WU Y J, CAO Y, WANG Q F.Retraction Note: Ssembly sequence planning method based on particle swarm algorithm[J]. Cluster computing, 2023, 26(1): 55.
[11] MISHRA A, DEB S.Ssembly sequence optimization using a flower pollination algorithm-based approach[J]. Journal of intelligent manufacturing, 2019, 30(2): 461-482.
[12] Ab RShid Mohd Fadzil Faisae. A hybrid Ant-Wolf Algorithm to optimize Ssembly sequence planning problem[J]. Ssembly automation, 2017, 37(2): 238-248.
[13] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[14] DENG W, XU J J, SONG Y J, et al.An effective improved co-evolution ant colony optimisation algorithm with multi-strategies and its application[J]. International journal of bio-inspired computation, 2020, 16(3): 158.
[15] LUAN W J, LIU G J, JIANG C J, et al.MPTR: a maximal-marginal-relevance-based personalized trip recommendation method[J]. IEEE transactions on intelligent transportation systems, 2018, 19(11): 3461-3474.
[16] PEKER M, ŞEN B, KUMRU P Y.An efficient solving of the traveling salesman problem: the ant colony system having parameters optimized by the taguchi method[J]. Turkish journal of electrical engineering & computer sciences, 2013, 21: 2015-2036.
[17] MIRJALILI S, LEWIS A.The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51-67.
[18] LU C, WONG Y S, FUH J H.An enhanced Ssembly planning approach using a multi-objective genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, part B: journal of engineering manufacture, 2006, 220(2): 255-272.
[19] SHIANG-FONG SMITH S, SMITH G C, LIAO X Y. Automatic stable Ssembly sequence generation and evaluation[J]. Journal of manufacturing systems, 2001, 20(4): 225-235.
[20] 李鑫, 张超, 石帅飞, 等. 一种结合双重移相与鲸鱼算法的直流变换器回流功率控制策略[J]. 太阳能学报, 2022, 43(9): 468-477.
LI X, ZHANG C, SHI S F, et al.A DC converter reflux power control strategy combining double phase shifting and whale algorithm[J]. Acta energiae solaris sinica, 2022, 43(9): 468-477.
[21] KAUR G, ARORA S.Chaotic whale optimization algorithm[J]. Journal of computational design and engineering, 2018, 5(3): 275-284.
[22] 张希淼. 基于混合策略改进的鲸鱼优化算法研究[D]. 哈尔滨: 哈尔滨师范大学, 2022.
ZHANG X M.Research on whale optimization algorithm based on improved hybrid strategy[D]. Harbin: Harbin Normal University, 2022.
[23] ISLAM S M, DS S, GHOSH S, et al.An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2012, 42(2): 482-500.
[24] 薛阳, 燕宇铖, 贾巍, 等. 基于改进灰狼算法优化长短期记忆网络的光伏功率预测[J]. 太阳能学报, 2023, 44(7): 207-213.
XUE Y, YAN Y C, JIA W, et al.Photovoltaic power prediction model based on IGWO-LSTM[J]. Acta energiae solaris sinica, 2023, 44(7): 207-213.
[25] ARIYARATNE M K A, FERNANDO T G I, WEERAKOON S. A self-tuning firefly algorithm to tune the parameters of ant colony system[J]. International journal of swarm intelligence, 2018, 3(4): 309.

基金

国家重点研发计划(2022YFE0207000)

PDF(1986 KB)

Accesses

Citation

Detail

段落导航
相关文章

/