光伏阵列铺装对屋顶传热影响显著,为合理地衡量日照阴影移动、天空背景辐射和屋顶内部水平传热的影响,建立考虑太阳实时移动及辐射角系数差异的光伏阵列屋顶二维动态传热模型,并实验验证该模型的准确性。现有一维节点传热模型存在高估光伏组件遮阳和阻挡散热效果的问题,与之相比,该二维动态传热模型可准确计算光伏屋顶传热量,得到更接近实际工况的评估结果。以夏热冬冷地区建筑屋顶安装30°倾角的光伏阵列为例,夏季和冬季典型日屋顶冷/热负荷可分别降低22.4%和4.0%,冷/热负荷峰值分别降低35.9%和16.7%,峰值时间延后约40 min。应用该模型计算分析光伏阵列的安装倾角、间距、屋顶保温以及吸收率对屋顶传热的影响,并提出优化设计建议。
Abstract
Rooftop PV arrays have a significant impact on the roof’s heat transfer. A two-dimensional dynamic heat transfer model for PV array roofs is developed in order to measure the effects of direct solar radiation movement, sky background radiation, and horizontal heat transfer within the roof accurately. This model accounts for the real-time movement of the sun and the differences in radiation angle coefficients and the accuracy of the model is verified by experiments. The model is compared to existing one-dimensional node heat transfer models that overestimate the shading and heat dissipation blocking effects of the PV components. The results show that the two-dimensional dynamic model accurately calculates the heat transfer of PV roofs, yielding results closer to actual conditions. Furthermore, the results indicate that installing PV arrays with a 30° tilt angle on rooftops in regions with hot summers and cold winters can reduce the summer and winter typical day cooling and heating loads by 22.4% and 4.0%, respectively, with peak reductions of 35.9% and 16.7%. The peak times are delayed by approximately 40 minutes. Finally, the model serves as a tool to analyze the effects of tilt angle, spacing, roof insulation, and absorptivity on roof heat transfer and to propose optimal design suggestions.
关键词
光伏阵列 /
屋顶 /
入射太阳辐射 /
传热 /
动态模拟
Key words
PV arrays /
roof /
incident solar radiation /
heat transfer /
dynamic simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中国建筑节能协会. 中国建筑能耗研究报告2020[J]. 建筑节能(中英文), 2021, 49(2): 1-6.
China Building Energy Efficiency Association. China building energy consumption annual report 2020[J]. Building energy efficiency, 2021, 49(2): 1-6.
[2] 仲蕊. 我国分布式光伏持续高速发展[N]. 中国能源报, 2023-03-27(019).
ZHONG R. Continuous high-speed development of distributed photovoltaics in china[N]. China energy news, 2023-03-27(019).
[3] 于瑛, 姚星, 丑锦帅, 等. 城镇典型住宅建筑屋顶分布式光伏系统潜能分析[J]. 太阳能学报, 2023, 44(7): 182-190.
YU Y, YAO X, CHOU J S, et al.Potential analysis of distributed PV systems on roof of typical residential building in urban area[J]. Acta energiae solaris sinica, 2023, 44(7): 182-190.
[4] ODEH S.Thermal performance of dwellings with rooftop PV panels and PV/thermal collectors[J]. Energies, 2018, 11(7): 1879.
[5] DEHWAH A H A, ASIF M. Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates[J]. Renewable energy, 2019, 131: 1288-1299.
[6] CHENVIDHYA T, SEAPAN M, PARINYA P, et al.Investigation of power values of PV rooftop systems based on heat gain reduction[C]//Reliability of Photovoltaic Cells, Modules, Components, and Systems Ⅷ. San Diego, California, USA, 2015, 9563: 106-111.
[7] 杨玉兰, 康宁, 龚曦. 降低建筑空调能耗研究[J]. 重庆建筑大学学报, 2008, 30(4): 6-9, 26.
YANG Y L, KANG N, GONG X.Reducing the heating and cooling energy consumption of buildings[J]. Journal of Chongqing Jianzhu University, 2008, 30(4): 6-9, 26.
[8] SALAMANCA F, GEORGESCU M, MAHALOV A, et al.Citywide impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand[J]. Boundary-layer meteorology, 2016, 161: 203-221.
[9] HOSSEINI M, AKBARI H.Heating energy penalties of cool roofs: the effect of snow accumulation on roofs[J]. Advances in building energy research, 2014, 8(1): 1-13.
[10] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
WANG J, YU B D, WANG C Y, et al.New advancements of building integrated photovoltaic/thermal system(BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[11] YANG H, ZHU Z, BURNETT J, et al.A simulation study on the energy performance of photovoltaic roofs[J]. ASHRAE transactions, 2001, 107: 129.
[12] 任建波, 李忠伟, 王一平, 等. 屋顶光伏与建筑负荷之间的相互影响[J]. 太阳能学报, 2008, 29(7): 849-855.
REN J B, LI Z W, WANG Y P, et al.Interaction between solar PV roofs and loads of the building[J]. Acta energiae solaris sinica, 2008, 29(7): 849-855.
[13] DOMINGUEZ A, KLEISSL J, LUVALL J C.Effects of solar photovoltaic panels on roof heat transfer[J]. Solar energy, 2011, 85(9): 2244-2255.
[14] KAPSALIS V C, VARDOULAKIS E, KARAMANIS D.Simulation of the cooling effect of the roof-added photovoltaic panels[J]. Advances in building energy research, 2014, 8(1): 41-54.
[15] 刘艳峰, 王玥, 王登甲, 等. 屋顶光伏发电与遮阳综合节能分析[J]. 太阳能学报, 2019, 40(6): 1545-1552.
LIU Y F, WANG Y, WANG D J, et al.Study on comprehensive energy-saving of shading and photovoltaic performance of roof added PV module[J]. Acta energiae solaris sinica, 2019, 40(6): 1545-1552.
[16] DUFFIE J A, BECKMAN W A, BLAIR N.Solar engineering of thermal processes, photovoltaics and wind[M]. New York: John Wiley and Sons, Inc, 2020.
[17] 吴贞龙, 徐政, 胡晓燕, 等. 倾斜面太阳辐照度实用计算模型的研究[J]. 太阳能学报, 2016, 37(3): 787-793.
WU Z L, XU Z, HU X Y, et al.Study on practical calculating models of irradiance intensity on tilted surfaces[J]. Acta energiae solaris sinica, 2016, 37(3): 787-793.
[18] SPITLER J, NIGUSSE B.Refinements and improvements to the radiant time series method[J]. ASHRAE transactions, 2010, 116: 542-549.
[19] KAPSALIS V, KARAMANIS D.On the effect of roof added photovoltaics on building’s energy demand[J]. Energy and buildings, 2015, 108: 195-204.
[20] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. New York: John Wiley and Sons, Inc, 2013.
[21] DAVIS M W, FANNEY A H, DOUGHERTY B P.Prediction of building integrated photovoltaic cell temperatures[J]. Journal of solar energy engineering, 2001, 123(3): 200-210.
[22] WANG D J, QI T, LIU Y F, et al.A method for evaluating both shading and power generation effects of rooftop solar PV panels for different climate zones of China[J]. Solar energy, 2020, 205: 432-445.
[23] 王斯成. 光伏方阵占地数学模型和计算实例(上)[J]. 太阳能, 2015 (4): 22-27.
WANG S C.Mathematical model and calculation example of photovoltaic square array (Ⅰ)[J]. Solar energy, 2015 (4): 22-27.