提出一种蛇形管道水冷式PV/T模块,并基于双热源四联供系统实验平台展开对比实验,研究不同进水温度对蛇形管道水冷式PV/T模块发电、集热以及等效热效率的影响。结果表明,进水温度与光伏组件温度成正线性相关性,与得热量成负线性相关性;水冷PV/T模块相较于对比模块光伏组件温度下降21.19~31.74 ℃、发电效率提升6.838%~11.805%;进水温度每下降5 ℃,发电效率提升2.5%~5%,集热效率提升9.28%~29.32%;在平均太阳辐照度600 W/m2、蛇形管道内水流量0.30 m3/h、环境平均温度36.3 ℃的测试条件下,20 ℃进水温度时蛇形水冷式PV/T模块的发电效率为17.90%,集热效率为65.70%,等效热效率可达112.80%。
Abstract
Serpentine pipeline water-cooled PV/T module was proposed. The comparison experiments were conducted on the experimental platform of dual-heat source quadruple power supply system, where the effect of different inlet water temperatures of the serpentine pipeline water-cooled PV/T module on the electrical and thermal efficiency can be investigated. The results show that: The inlet water temperature shows a positive linear correlation with the temperature of the photovoltaic module and a negative linear correlation with the heat gain. Compared with the comparison module, the temperature of the water-cooled PV/T module can be decreased by 21.19 ℃-31.74 ℃, and the electrical efficiency is increased by 6.838%-11.805%. For every 5 ℃ decrease in inlet water temperature, the electrical efficiency is increased by 2.5%-5%, and the thermal efficiency is increased by 9.28%-29.32%. With the average solar irradiance of 600 W/m2, serpentine pipe flow rate of 0.30 m3/h and the average ambient temperature of 36.3 ℃, the electrical efficiency of serpentine water-cooled PVT module is 17.90%, the thermal efficiency is 65.70%, and the comprehensive efficiency can reach 112.80% when the inlet water temp
关键词
太阳能 /
光电 /
热能 /
PV/T /
蛇形水冷 /
转换效率
Key words
solar energy /
photoelectricity /
thermal energy /
PV/T /
the serpentine pipeline water-cooled /
conversion efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DIWANIA S, AGRAWAL S, SIDDIQUI A S, et al.Photovoltaic-thermal (PV/T) technology: a comprehensive review on applications and its advancement[J]. International journal of energy and environmental engineering, 2020, 11(1): 33-54.
[2] 杨鲁伟, 李明, 王富强, 等. 平板太阳能集热器热损系数及稳定性研究[J]. 太阳能学报, 2022, 43(2): 268-275.
YANG L W, LI M, WANG F Q, et al.Research on heat loss coefficient and stability for flat-plate solar collectors[J]. Acta energiae solaris sinica, 2022, 43(2): 268-275.
[3] ZHANG X X, ZHAO X D, SMITH S, et al.Review of R&D progress and practical application of the solar photovoltaic/thermal(PV/T) technologies[J]. Renewable and sustainable energy reviews, 2012, 16(1): 599-617.
[4] BILEN K, ERDOĞAN İ. Effects of cooling on performance of photovoltaic/thermal(PV/T) solar panels: a comprehensive review[J]. Solar energy, 2023, 262: 111829.
[5] SHEN C Q, LIU F F, QIU S, et al.Numerical study on the thermal performance of photovoltaic thermal(PV/T) collector with different parallel cooling channels[J]. Sustainable energy technologies and assessments, elsevier, 2021, 45: 101101.
[6] 徐向宇, 徐政, 李光明. 光伏空气源热泵的研究与开发[J]. 太阳能学报, 2022, 43(1): 356-361.
XU X Y, XU Z, LI G M.Research and development of photovoltaic air source heat pump systems[J]. Acta energiae solaris sinica, 2022, 43(1): 356-361.
[7] FUDHOLI A, SOPIAN K, YAZDI M H, et al.Performance analysis of photovoltaic thermal(PVT) water collectors[J]. Energy conversion and management, 2014, 78: 641-651.
[8] 马进伟, 方浩, 陈茜茜, 等. 无盖板型水冷式PV/T模块光电/光热综合性能实验研究[J]. 太阳能学报, 2022, 43(6): 66-71.
MA J W, FANG H, CHEN Q Q, et al.Experimental study on photoelectric/thermal comprehensive performence of water-cooled PV/T module without glass cover[J]. Acta energiae solaris sinica, 2022, 43(6): 66-71.
[9] DAS D, BORDOLOI U, KAMBLE A D, et al.Performance investigation of a rectangular spiral flow PV/T collector with a novel form-stable composite material[J]. Applied thermal engineering, 2021, 182: 116035.
[10] 张亮, 毕宜鑫, 张高明, 等. 平板型光伏/光热系统高效换热数值模拟研究[J]. 太阳能学报, 2022, 43(7): 159-165.
ZHANG L, BI Y X, ZHANG G M, et al.Numerical investigation on high-efficiency heat transfer of plate photovoltaic/thermal systems[J]. Acta energiae solaris sinica, 2022, 43(7): 159-165.
[11] ZHOU J C, KE H Y, DENG X Q.Experimental and CFD investigation on temperature distribution of a serpentine tube type photovoltaic/thermal collector[J]. Solar energy, 2018, 174: 735-742.
[12] DAS D, KAMBLE A D, KALITA P.Performance investigation of transparent photovoltaic-thermal collector with horizontal oscillating and rectangular spiral flow patterns[J]. International journal of energy research, 2022, 46(1): 239-253.
[13] HU H M, YUAN D Z, WANG T, et al.Dynamic performance of high concentration photovoltaic/thermal system with air temperature and humidity regulation system (HCPVTH)[J]. Applied thermal engineering, 2019, 146: 577-587.
[14] HUANG B J, LIN T H, HUNG W C, et al.Performance evaluation of solar photovoltaic/thermal systems[J]. Solar energy, 2001, 70(5): 443-448.
[15] HE W, ZHANG Y, JI J.Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water[J]. Applied thermal engineering, 2011, 31(16): 3369-3376.
[16] GB/T4271—2021, 太阳能集热器性能试验方法[S]
GB/T4271—2021, Test methods for the performance of solar collectors[S].