针对目前利用振动信号对变转速情况下风电机组齿轮箱诊断不佳的问题,提出一种基于转子绕组电流的双馈风电机组齿轮箱阶次跟踪与故障诊断方法。首先,通过优化变分模态分解算法分析双馈异步风力发电机(DFIG)转子绕组电流,获得滤波后的电流信号。然后,采用同步提取变换方法对转子绕组电流进行时频分析,基于提取的电流信号时频脊线和转子绕组电流估计转频原理,计算DFIG转子的瞬时转频。根据齿轮箱之间传动比,推导出行星齿轮箱输出端轴承转频。最后,对采集的行星齿轮箱振动信号进行等角度重采样,通过获得的稳态角域信号进行包络阶次谱分析,实现对双馈风电机组齿轮箱的故障诊断。
Abstract
In response to the prevalent challenges of diagnosing gearbox faults in wind turbine systems under variable speed conditions using vibration signals, this paper proposes a novel method based on rotor winding current for order tracking and fault diagnosis in doubly-fed wind turbine gearboxes. Initially, the rotor winding current of the doubly-fed induction wind generator (DFIG) is processed using an optimized variational mode decomposition algorithm, obtaining the filtered current signal. Then, a synchronous extraction transformation method is applied for time-frequency analysis of the rotor winding current. Based on the time-frequency ridge line of the extracted current signal and the estimated rotation frequency principle of the rotor winding current, the instantaneous rotation frequency of the DFIG rotor is calculated. According to the transmission ratio between gearboxes, the rotation frequency of the output shaft bearing of the planetary gearbox is derived. Finally, the collected vibration signals from the planetary gearbox are resampled at equal angles, and through the obtained steady-state angular domain signals, envelope order spectrum analysis is performed to achieve fault diagnosis of gearboxes in doubly-fed wind turbine units.
关键词
风电机组 /
齿轮箱 /
故障诊断 /
阶次跟踪 /
转子绕组电流
Key words
wind turbines /
gearbox /
fault diagnosis /
order tracking /
rotor winding current
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡爱军, 严家祥, 白泽瑞. 基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法[J]. 振动与冲击, 2021, 40(7): 268-273.
HU A J, YAN J X, BAI Z R.Multi-fault diagnosis method for wind turbine gearbox based on MOMEDA and enhanced cepstrum[J]. Journal of vibration and shock, 2021, 40(7): 268-273.
[2] 王志乐, 王波. 基于包络阶比分析的太阳轮故障特征提取[J]. 太阳能学报, 2020, 41(9): 318-323.
WANG Z L, WANG B.Fault feature extraction of sun gear based on envelope order analysis[J]. Acta energiae solaris sinica, 2020, 41(9): 318-323.
[3] 王友仁, 王俊, 黄海安. 基于非线性短时傅里叶变换阶次跟踪的变速行星齿轮箱故障诊断[J]. 中国机械工程, 2018, 29(14): 1688-1695.
WANG Y R, WANG J, HUANG H A.Fault diagnosis of planetary gearboxes based on NLSTFT order tracking under variable speed conditions[J]. China mechanical engineering, 2018, 29(14): 1688-1695.
[4] 万书亭, 王燕杰, 张雄, 等. 时变工况的风电机组齿轮箱无转速计阶次跟踪方法研究[J]. 振动工程学报, 2023, 36(1): 266-279.
WAN S T, WANG Y J, ZHANG X, et al.Tacho-less order tracking method of wind turbine gearbox under time-varying conditions[J]. Journal of vibration engineering, 2023, 36(1): 266-279.
[5] 杨新敏, 郭瑜, 华健翔. 基于阶频谱相干的变转速滚动轴承内外圈复合故障特征分离提取[J]. 振动与冲击, 2022, 41(22): 211-218.
YANG X M, GUO Y, HUA J X.Feature separation and extraction of compound faults of inner and outer rings of rolling bearings at variable speed based on order-frequency spectral coherence[J]. Journal of vibration and shock, 2022, 41(22): 211-218.
[6] ZHANG X, LIU Z W, WANG J X, et al.Time-frequency analysis for bearing fault diagnosis using multiple Q-factor Gabor wavelets[J]. ISA transactions, 2019, 87: 225-234.
[7] GAO A R, FENG Z P, LIANG M.Permanent magnet synchronous generator stator current AM-FM model and joint signature analysis for planetary gearbox fault diagnosis[J]. Mechanical systems and signal processing, 2021, 149: 107331.
[8] NIU J H, LU S L, LIU Y B, et al.Intelligent bearing fault diagnosis based on tacholess order tracking for a variable-speed AC electric machine[J]. IEEE sensors journal, 2019, 19(5): 1850-1861.
[9] 陈康, 安康, 王骁贤, 等. 基于振动和电流信号深度融合的电动机转速估计及轴承故障诊断[J]. 轴承, 2023(2): 54-60.
CHEN K, AN K, WANG X X, et al.Estimation of motor speed and fault diagnosis of bearings based on deep fusion of vibration and current signals[J]. Bearing, 2023(2): 54-60.
[10] 高冠琪, 黄伟国, 李宁, 等. 基于时频挤压和阶比分析的变转速轴承故障检测方法[J]. 振动与冲击, 2020, 39(3): 205-210, 226.
GAO G Q, HUANG W G, LI N, et al.Fault detection method for varying rotating speed bearings based on time-frequency squeeze and order analysis[J]. Journal of vibration and shock, 2020, 39(3): 205-210, 226.
[11] CHEN X M, SHU G Q, ZHANG K, et al.A fault characteristics extraction method for rolling bearing with variable rotational speed using adaptive time-varying comb filtering and order tracking[J]. Journal of mechanical science and technology, 2022, 36(3): 1171-1182.
[12] 曹洁, 张玉林, 王进花, 等. 基于VMD和SVPSO-BP的滚动轴承故障诊断[J]. 太阳能学报, 2022, 43(9): 294-301.
CAO J, ZHANG Y L, WANG J H, et al.Fault diagnosis of rolling bearing based on VMD and SVPSO-BP[J]. Acta energiae solaris sinica, 2022, 43(9): 294-301.
[13] 张龙, 熊国良, 黄文艺. 复小波共振解调频带优化方法和新指标[J]. 机械工程学报, 2015, 51(3): 129-138.
ZHANG L, XIONG G L, HUANG W Y.New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J]. Journal of mechanical engineering, 2015, 51(3): 129-138.
[14] NIU J H, WANG X X, LU S L, et al.Motor bearing fault diagnosis based on frequency conversion estimation and order analysis[J]. Procedia manufacturing, 2020, 49: 160-165.
基金
国家自然科学基金(52275109); 河北省自然科学基金(E2022502007); 保定市科技计划基础研究专项基金(2172P010); 河北省研究生创新能力培养资助项目(CXZZBS2025196)