单相NPC逆变器三矢量模型预测电流控制

徐岸非, 蔡玉华, 袁雷, 梅加伟

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 175-183.

PDF(4577 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4577 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 175-183. DOI: 10.19912/j.0254-0096.tynxb.2023-1712

单相NPC逆变器三矢量模型预测电流控制

  • 徐岸非, 蔡玉华, 袁雷, 梅加伟
作者信息 +

3-VECTOR MODEL PREDICTIVE CURRENT CONTROL OF SINGLE-PHASE NPC INVERTER

  • Xu Anfei, Cai Yuhua, Yuan Lei, Mei Jiawei
Author information +
文章历史 +

摘要

针对单相三电平中点钳位型(NPC)逆变器有限集模型预测电流控制(FCS-MPCC)无调制器、频率不固定、开关频率高的缺点,提出一种优化的三矢量多目标预测电流控制。该方法将电压矢量分成固定开关动作的若干扇区,通过计算占空比,从而实现开关频率固定的脉冲调制。其代价函数应用多目标预测控制,实现中点电位均衡和降低开关频率。此外,该文还考虑了延迟补偿。利用DSP-TMS320F28374D在单相NPC逆变器实验平台上实现所提策略,验证该方法的有效性。

Abstract

Aiming at the drawbacks of finite constraint set-model predictive current control (FCS-MPCC) for single-phase neutral point clamped (NPC) three-level inverters without modulator, unfixed frequency, and high switching frequency, an optimized 3-vector multi-objective predictive current control is proposed in this paper. The method divides the voltage vector into a number of sectors with fixed switching action by calculating the duty cycle, thus achieving pulse modulation with fixed switching frequency. The cost function applies multi-objective predictive control to achieve the balance of neutral point potential and reduce the switching frequency. In addition, the paper considers delay compensation. The effectiveness of the method is verified by implementing the proposed strategy on a single-phase NPC inverter experimental platform using a DSP-TMS320F28374D.

关键词

三电平NPC逆变器 / 模型预测电流控制 / 固定开关频率 / 中点电位平衡 / 延时补偿

Key words

three level NPC inverter / model predictive current control / fixed switching frequency / neutral-point voltage balance / delay compensation

引用本文

导出引用
徐岸非, 蔡玉华, 袁雷, 梅加伟. 单相NPC逆变器三矢量模型预测电流控制[J]. 太阳能学报. 2025, 46(2): 175-183 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1712
Xu Anfei, Cai Yuhua, Yuan Lei, Mei Jiawei. 3-VECTOR MODEL PREDICTIVE CURRENT CONTROL OF SINGLE-PHASE NPC INVERTER[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 175-183 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1712
中图分类号: TM464   

参考文献

[1] 王立乔, 邢晓珊, 管成功. 一种单相非隔离可抑制漏电流的升降压型逆变器[J]. 太阳能学报, 2023, 44(9): 141-150.
WANG L Q, XING X S, GUAN C G.Single-phase non-isolated buck-boost inverter with leakage current suppression[J]. Acta energiae solaris sinica, 2023, 44(9): 141-150.
[2] 施建强, 李双, 赵宁宁, 等. 基于神经网络的逆变器约束自适应PI控制[J]. 太阳能学报, 2023, 44(10): 19-27.
SHI J Q, LI S, ZHAO N N, et al.Constrained adaptive PI control of inverter based on neural network[J]. Acta energiae solaris sinica, 2023, 44(10): 19-27.
[3] 杨荣峰, 于雁南, 俞万能, 等. 新能源船舶并网逆变器电网支撑协调控制[J]. 电工技术学报, 2019, 34(10): 2141-2154.
YANG R F, YU Y N, YU W N, et al.New energy ship grid-connected inverter grid support and cooperative control[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2141-2154.
[4] 黄逸, 杨俊华, 罗琦, 等. 基于激励力预估的直驱式波浪发电系统功率优化[J]. 太阳能学报, 2023, 44(8): 556-562.
HUANG Y, YANG J H, LUO Q, et al.Power optimization of direct-drive wave power system based on excitation force estimation[J]. Acta energiae solaris sinica, 2023, 44(8): 556-562.
[5] 朱俊杰, 原景鑫, 王路, 等. 单相中点钳位型H桥级联逆变器电容电压不均建模研究[J]. 海军工程大学学报, 2021, 33(2): 37-45.
ZHU J J, YUAN J X, WANG L, et al.Modeling of key factors for voltage-sharing of single-phase NPC H-bridge cascaded inverter[J]. Journal of Naval University of Engineering, 2021, 33(2): 37-45.
[6] YARLAGADDA A K, VERMA V.A novel multilevel inverter topology with reduced number of component count and total standing voltage for renewable energy conversion system[J]. Renewable energy focus, 2022, 43: 84-92.
[7] NGUYEN M H, KWAK S, CHOI S.Lifetime extension technique for voltage source inverters using selected switching states-based MPC method[J]. IEEE access, 2023, 11: 88686-88702.
[8] 代云中, 唐浩, 祁月文, 等. 一种无重叠时间无变压器电流型光伏并网逆变器研究[J]. 太阳能学报, 2023, 44(8): 232-237.
DAI Y Z, TANG H, QI Y W, et al.Research on current source PV grid-connected inverter with non-overlapping time and transformerless[J]. Acta energiae solaris sinica, 2023, 44(8): 232-237.
[9] 朱敏龙, 宋慧庆, 李宇航, 等. NPC型三电平逆变器可视化三矢量无模型预测控制策略[J]. 电力系统保护与控制, 2023, 51(10): 110-122.
ZHU M L, SONG H Q, LI Y H, et al.Visualized three-vector model-free predictive control strategy for an NPC three-level inverter[J]. Power system protection and control, 2023, 51(10): 110-122.
[10] 冯腾, 康龙云, 胡毕华, 等. 基于无差拍控制的T型三电平逆变器中点电位平衡策略[J]. 电工技术学报, 2018, 33(8): 1827-1834.
FENG T, KANG L Y, HU B H, et al.A neutral point potential balancing strategy for three-level T-type inverter based on deadbeat control[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1827-1834.
[11] 周立, 尚治博, 谢磊, 等. 永磁同步电机三矢量优化预测电流控制[J]. 电力电子技术, 2022, 56(6): 49-52.
ZHOU L, SHANG Z B, XIE L, et al.Three-vector optimal predictive current control for permanent magnet synchronous motor[J]. Power electronics, 2022, 56(6): 49-52.
[12] XU W.Research on FCS-MPC for LC filter inverter[J]. Academic journal of engineering and technology science, 2023, 6(6): 52-57.
[13] 周怿源, 秦亮, 杨诗琦, 等. 模块化多电平变流器电容电压均衡策略研究进展[J]. 电网技术, 2023, 47(1): 322-338.
ZHOU Y Y, QIN L, YANG S Q, et al.Research progress of capacitor voltage balancing strategies for modular multilevel converters[J]. Power system technology, 2023, 47(1): 322-338.
[14] 田宇, 陈经国. 三电平整流器的延时补偿模型预测控制[J]. 承德石油高等专科学校学报, 2022, 24(5): 35-41.
TIAN Y, CHEN J G.Performance analysis of delay compensation in model predictive control for three-level rectifier[J]. Journal of Chengde Petroleum College, 2022, 24(5): 35-41.
[15] VAZQUEZ S, RODRIGUEZ J, RIVERA M, et al.Model predictive control for power converters and drives: advances and trends[J]. IEEE transactions on industrial electronics, 2017, 64(2): 935-947.
[16] 陈卓易, 屈稳太, 邱建琪. 一种开关频率可控的有限集模型预测控制[J]. 电工技术学报, 2022, 37(16): 4134-4142.
CHEN Z Y, QU W T, QIU J Q.A switching-frequency-controlled finite-control-set model predictive control method[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4134-4142.
[17] DANG C L, WANG F, LIU D, et al.A fixed operation frequency model predictive control for LCL-filter NPC-type inverter[C]//2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE). Ji’nan, China, 2021: 387-392.
[18] 马辉, 危伟, 鄢圣阳, 等. 三相Vienna整流器无差拍预测直接功率控制策略研究[J]. 电机与控制学报, 2020, 24(1): 95-103.
MA H, WEI W, YAN S Y, et al.Deadbeat predictive direct power control of three-phase Vienna rectifiers[J]. Electric machines and control, 2020, 24(1): 95-103.
[19] 许萌, 郭辉. NPC三电平逆变器目标合成固定开关频率MPC[J]. 电力电子技术, 2021, 55(5): 136-140.
XU M, GUO H.NPC three-level inverter multi-objective synthesis MPC with fixed switching frequency[J]. Power electronics, 2021, 55(5): 136-140.
[20] 程建材, 康龙云, 胡毕华, 等. 三电平并网逆变器恒定开关频率的模型预测控制[J]. 电力自动化设备, 2019, 39(5): 169-175.
CHENG J C, KANG L Y, HU B H, et al.Model predictive control with constant switching frequency of three-level grid-connected inverter[J]. Electric power automation equipment, 2019, 39(5): 169-175.
[21] LEE J H, LEE J S, MOON H C, et al.An improved finite-set model predictive control based on discrete space vector modulation methods for grid-connected three-level voltage source inverter[J]. IEEE journal of emerging and selected topics in power electronics, 2018, 6(4): 1744-1760.
[22] 肖蕙蕙, 魏苏东, 郭强, 等. 优化开关序列的PWM整流器模型预测控制策略[J]. 电工技术学报, 2022, 37(14): 3665-3675, 3700.
XIAO H H, WEI S D, GUO Q, et al.Model predictive control strategy for PWM rectifier with optimized switching sequence[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3665-3675, 3700.
[23] YANG Y, WEN H Q, FAN M D, et al.Multiple-voltage-vector model predictive control with reduced complexity for multilevel inverters[J]. IEEE transactions on transportation electrification, 2020, 6(1): 105-117.
[24] 高瞻, 李耀华, 葛琼璇, 等. 适用于大功率三电平中点钳位整流器的SVPWM和DPWM策略研究[J]. 电工技术学报, 2020, 35(23): 4864-4876.
GAO Z, LI Y H, GE Q X, et al.Research on SVPWM and DPWM strategies suitable for high power three-level neutral point clamped rectifier[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4864-4876.
[25] 金楠, 窦智峰, 李琰琰, 等. 电压源并网变换器有限控制集预测电流控制[J]. 电机与控制学报, 2019, 23(9): 123-130.
JIN N, DOU Z F, LI Y Y, et al.Finite control sets predictive current control of voltage source grid-connected converter[J]. Electric machines and control, 2019, 23(9): 123-130.
[26] HAN J G, LIU L, E W, et al. Double voltage vector model predictive control for grid-connected cascade H-bridge multilevel inverter with fixed switching frequency[J]. ISA transactions, 2023, 142: 653-662.
[27] 曾实, 陈卓, 谭兴, 等. 基于模型预测的双馈电机并网策略[J]. 科学技术与工程, 2019, 19(23): 113-119.
ZENG S, CHEN Z, TAN X, et al.Grid-connected strategy of doubly fed induction generator based on model predictive control[J]. Science technology and engineering, 2019, 19(23): 113-119.
[28] 郭磊磊, 李国昊, 金楠, 等. 两电平电压源逆变器双矢量调制模型预测控制: 理论分析、实验验证和推广[J]. 电工技术学报, 2021, 36(1): 39-49.
GUO L L, LI G H, JIN N, et al.Two-vector-based modulated model predictive control method for 2-level voltage source inverters: theoretical analysis, experimental verification and extension[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 39-49.
[29] 罗龙, 李耀华, 李子欣, 等. 一种基于双矢量恒定开关频率的三电平ANPC型全桥逆变器模型预测控制方法[J]. 中国电机工程学报, 2021, 41(S1): 343-355.
LUO L, LI Y H, LI Z X, et al.A model predictive control method of three-level ANPC type full-bridge inverter based on dual vector constant switching frequency[J]. Proceedings of the CSEE, 2021, 41(S1): 343-355.
[30] ZHANG Y C, BAI Y N, YANG H T, et al.Low switching frequency model predictive control of three-level inverter-fed IM drives with speed-sensorless and field-weakening operations[J]. IEEE transactions on industrial electronics, 2019, 66(6): 4262-4272.
[31] WANG Q, YU H T, LI C, et al.A low-complexity optimal switching time-modulated model-predictive control for PMSM with three-level NPC converter[J]. IEEE transactions on transportation electrification, 2020, 6(3): 1188-1198.

基金

电磁能技术全国重点实验室项目(614221722020501)

PDF(4577 KB)

Accesses

Citation

Detail

段落导航
相关文章

/