基于广义S变换的多变量非平稳风速高精度模拟

陆炳文, 罗锞兴, 曹黎媛, 李春祥

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 548-555.

PDF(4210 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4210 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 548-555. DOI: 10.19912/j.0254-0096.tynxb.2023-1716

基于广义S变换的多变量非平稳风速高精度模拟

  • 陆炳文, 罗锞兴, 曹黎媛, 李春祥
作者信息 +

HIGH PRECISION SIMULATION OF MULTIVARIATE NON-STATIONARY WIND SPEEDS BASED ON GENERALIZED S-TRANSFORM

  • Lu Bingwen, Luo Kexing, Cao Liyuan, Li Chunxiang
Author information +
文章历史 +

摘要

提出基于广义S变换 (GST)的多变量非平稳风速高精度模拟方法。为获得更清晰的时频分辨率,首先进行了窗函数参数研究。随后,使用粒子群优化 (PSO) 方法对GST窗函数参数进行寻优。使用优化的GST时频谱进行模拟,获得高精度多变量非平稳风速模拟样本。最后,通过数值试验验证该方法的有效性和优越性。

Abstract

In this respect, a high precision simulation method based generalized S-transform (GST) is proposed in this paper for multivariate non-stationary winds. Firstly, the window function parameters are investigated to obtain a clearer time-frequency resolution. Further, the particle swarm optimization (PSO) method is used to optimize the parameters of GST window function. The optimized GST time-frequency spectrum is used for simulation, the high precision multivariate non-stationary wind speed samples are then generated. Finally, the effectiveness and superiority of the proposed method are verified by numerical experiments.

关键词

风力发电 / 非平稳风速 / 广义S变换 / 数值模拟 / 粒子群优化 / 高精度

Key words

wind power / non-stationary wind speed / generalized S transform / numerical simulation / particle swarm optimization / high precision

引用本文

导出引用
陆炳文, 罗锞兴, 曹黎媛, 李春祥. 基于广义S变换的多变量非平稳风速高精度模拟[J]. 太阳能学报. 2025, 46(2): 548-555 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1716
Lu Bingwen, Luo Kexing, Cao Liyuan, Li Chunxiang. HIGH PRECISION SIMULATION OF MULTIVARIATE NON-STATIONARY WIND SPEEDS BASED ON GENERALIZED S-TRANSFORM[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 548-555 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1716
中图分类号: TU311   

参考文献

[1] 王晓惠, 巫黎明, 张洋, 等. 基于非平稳Gumbel分布模型的设计风速及抗风风险研究[J]. 太阳能学报, 2019, 40(11): 3309-3315.
WANG X H, WU L M, ZHANG Y, et al.Designed wind speed and risk analysis of wind disaster prevention for non-stationary distribution model[J]. Acta energiae solaris sinica, 2019, 40(11): 3309-3315.
[2] 张琰妮, 史加荣, 李津, 等. 融合残差与VMD-ELM-LSTM的短期风速预测[J]. 太阳能学报, 2023, 44(9): 340-347.
ZHANG Y N, SHI J R, LI J, et al.Short-term wind speed prediction based on residual and VMD-ELM-LSTM[J]. Acta energiae solaris sinica, 2023, 44(9): 340-347.
[3] 毕贵红, 赵鑫, 李璐, 等. 双模式分解CNN-LSTM集成的短期风速预测模型[J]. 太阳能学报, 2023, 44(3): 191-197.
BI G H, ZHAO X, LI L, et al.Dual-mode decomposition CNN-LSTM integrated short-term wind speed forecasting model[J]. Acta energiae solaris sinica, 2023, 44(3): 191-197.
[4] AHMAD K, KHARE M, CHAUDHRY K K.Wind tunnel simulation studies on dispersion at urban street canyons and intersections—a review[J]. Journal of wind engineering and industrial aerodynamics, 2005, 93(9): 697-717.
[5] YU C J, LI Y L, ZHANG M J, et al.Wind characteristics along a bridge catwalk in a deep-cutting gorge from field measurements[J]. Journal of wind engineering and industrial aerodynamics, 2019, 186: 94-104.
[6] JIANG Y, ZHAO N, PENG L L, et al.Fast simulation of fully non-stationary wind fields using a new matrix factorization assisted interpolation method[J]. Mechanical systems and signal processing, 2022, 172: 108973.
[7] WANG L J, MCCULLOUGH M, KAREEM A.A data-driven approach for simulation of full-scale downburst wind speeds[J]. Journal of wind engineering and industrial aerodynamics, 2013, 123: 171-190.
[8] HUANG G Q, PENG L L, KAREEM A, et al.Data-driven simulation of multivariate nonstationary winds: a hybrid multivariate empirical mode decomposition and spectral representation method[J]. Journal of wind engineering and industrial aerodynamics, 2020, 197: 104073.
[9] HUANG N E, WU Z, LONG S R, et al.On instantaneous frequency[J]. Advances in adaptive data analysis, 2009, 01(02):177-229.
[10] HUANG Z F, XU Y L, TAO T Y, et al.Time-varying power spectra and coherences of non-stationary typhoon winds[J]. Journal of wind engineering and industrial aerodynamics, 2020, 198: 104115.
[11] STOCKWELL R G, MANSINHA L, LOWE R P.Localization of the complex spectrum: the S transform[J]. IEEE transactions on signal processing, 1996, 44(4): 998-1001.
[12] HONG H P, CUI X Z, ZHOU W X.A model to simulate multidimensional nonstationary and non-Gaussian fields based on S-transform[J]. Mechanical systems and signal processing, 2021, 159: 107789.
[13] LI C X, LUO K X, CAO L Y.Data-driven simulation of multivariate nonstationary wind velocity with explicit introduction of the time-varying coherence functions[J]. Journal of wind engineering and industrial aerodynamics, 2022, 220: 104872.
[14] MCFADDEN P D, COOK J G, FORSTER L M.Decomposition of gear vibration signals by the generalised s transform[J]. Mechanical systems and signal processing, 1999, 13(5): 691-707.
[15] 江莉, 焦予栋, 向世召, 等. 用于多分量信号分析的自适应广义S变换算法研究[J]. 电子测量与仪器学报, 2022, 36(12): 136-143.
JIANG L, JIAO Y D, XIANG S Z, et al.Research on adaptive generalized S-transform algorithm for multi-component signal analysis[J]. Journal of electronic measurement and instrumentation, 2022, 36(12): 136-143.
[16] XUE W, ZHU J C, RONG X, et al.The analysis of ground penetrating radar signal based on generalized S transform with parameters optimization[J]. Journal of applied geophysics, 2017, 140: 75-83.
[17] PINNEGAR C R, MANSINHA L.The S-transform with windows of arbitrary and varying shape[J]. Geophysics, 2003, 68(1): 381-385.
[18] HONG H P, CUI X Z.Time-frequency spectral representation models to simulate nonstationary processes and their use to generate ground motions[J]. Journal of engineering mechanics, 2020, 146(9): 04020106.
[19] HONG H P.Response and first passage probability of linear elastic SDOF systems subjected to nonstationary stochastic excitation modelled through S-transform[J]. Structural safety, 2021, 88: 102007.
[20] XU Y L, CHEN J.Characterizing nonstationary wind speed using empirical mode decomposition[J]. Journal of structural engineering, 2004, 130(6): 912-920.
[21] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London series A: mathematical, physical and engineering sciences, 1998, 454(1971): 903-995.
[22] BAO X M, LI C X.Fast simulation of non-stationary wind velocity based on time-frequency interpolation[J]. Journal of wind engineering and industrial aerodynamics, 2019, 193: 103982.
[23] 陈学华, 贺振华, 黄德济. 广义S变换及其时频滤波[J]. 信号处理, 2008, 24(1): 28-31.
CHEN X H, HE Z H, HUANG D J.Generalized S transform and its time-frequency filtering[J]. Signal processing, 2008, 24(1): 28-31.
[24] GAST K D.A comparison of extreme wind events as sampled in the 2002 thunderstorm outflow experiment[D]. Lubbock: Texas Tech University, 2003.
[25] CHEN L, LETCHFORD C W.Multi-scale correlation analyses of two lateral profiles of full-scale downburst wind speeds[J]. Journal of wind engineering and industrial aerodynamics, 2006, 94(9): 675-696.
[26] ZHANG Y M, HUANG Z F, XIA Y.An improved multi-taper S-transform method to estimate evolutionary spectrum and time-varying coherence of nonstationary processes[J]. Mechanical systems and signal processing, 2023, 198: 110386.
[27] HUANG Z F, XU Y L, TAO T Y.Multi-taper S-transform method for evolutionary spectrum estimation[J]. Mechanical systems and signal processing, 2022, 168: 108667.

基金

国家自然科学基金(52108460)

PDF(4210 KB)

Accesses

Citation

Detail

段落导航
相关文章

/