基于瓦楞结构设计的风力机腹板结构性能研究

杨瑞, 万志远, 田楠, 曾学仁, 方亮, 包广超

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 524-530.

PDF(3304 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3304 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 524-530. DOI: 10.19912/j.0254-0096.tynxb.2023-1747

基于瓦楞结构设计的风力机腹板结构性能研究

  • 杨瑞1,2, 万志远1, 田楠3, 曾学仁3, 方亮3, 包广超3
作者信息 +

RESEARCH ON STRUCTURAL PERFORMANCE OF WEB OF WIND TURBINE BASED ON CORRUGATED STRUCTURE DESIGN

  • Yang Rui1,2, Wan Zhiyuan1, Tian Nan3, Zeng Xueren3, Fang Liang3, Bao Guangchao3
Author information +
文章历史 +

摘要

以NREL 5 MW风力机叶片为研究对象,基于瓦楞结构对叶片腹板进行创新结构设计,同时在ANSYS APDL中对风力机叶片进行铺层设计。在不改变叶片自身气动外形的前提下实现叶片重量减少和叶片强度提高的目的。通过使用ANSYS静力学模块对叶片进行模态、静力学、弯扭特性分析。研究结果表明:基于瓦楞结构设计的“T”型梁腹板在满足叶片结构强度的同时减轻了叶片的自重,并有效提高了叶片的抗扭性能。

Abstract

In this paper, the improved design of NREL 5 MW wind turbine’s blade was studied. The innovative structural design of the blade web was carried out based on corrugated structure, and the layup design of the wind turbine blades was carried out in ANSYS APDL to achieve the purpose of blade weight reduction and blade strength improvement without changing the aerodynamic shape of the blades. The modal, statics, bending and torsional characteristics of the blades were analyzed with the ANSYS statics module, and the research results show that the "T" beam web based on the corrugated structure design can meet the structural strength of the blade, reduce the weight of the blade, and effectively improve the torsional performance of the blade.

关键词

风力机叶片 / 腹板设计 / 复合材料 / 数值模拟 / 弯扭耦合 / 剪切性能

Key words

wind turbine blades / web design / composite materials / numerical simulation / bending-torsion coupling / shear properties

引用本文

导出引用
杨瑞, 万志远, 田楠, 曾学仁, 方亮, 包广超. 基于瓦楞结构设计的风力机腹板结构性能研究[J]. 太阳能学报. 2025, 46(3): 524-530 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1747
Yang Rui, Wan Zhiyuan, Tian Nan, Zeng Xueren, Fang Liang, Bao Guangchao. RESEARCH ON STRUCTURAL PERFORMANCE OF WEB OF WIND TURBINE BASED ON CORRUGATED STRUCTURE DESIGN[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 524-530 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1747
中图分类号: TK83   

参考文献

[1] 高伟, 李春, 武玉龙, 等. 叶尖小翼对腹板中空型风力机叶片模态特性的影响[J]. 现代制造工程, 2013(9): 17-21.
GAO W, LI C, WU Y L, et al.The modal characteristics impact of tip winglets to the hollow wind turbine blade[J]. Modern manufacturing engineering, 2013(9): 17-21.
[2] LAGO L I, PONTA F L, OTERO A D.Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade[J]. Renewable energy, 2013, 59: 13-22.
[3] 张立, 刘宇航, 李春, 等. 基于仿生设计的风力机叶片腹板力学性能分析[J]. 热能动力工程, 2019, 34(9): 141-147.
ZHANG L, LIU Y H, LI C, et al.Mechanical performance analysis of wind turbine blade web based on bionic design[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 141-147.
[4] 孟杰, 张喜清, 孙大刚. 带有仿生环形剪切腹板风机叶片抗弯强度[J]. 科学技术与工程, 2021, 21(31): 13354-13360.
MENG J, ZHANG X Q, SUN D G.The effects of ring shear webs on the bending strength of wind turbine blade[J]. Science technology and engineering, 2021, 21(31): 13354-13360.
[5] 周鹏展, 陈瑞, 刘正伟, 等. 基于翼型内部结构的风力机叶片动力学特性有限元分析[J]. 长沙理工大学学报(自然科学版), 2016, 13(4): 66-73.
ZHOU P Z, CHEN R, LIU Z W, et al.Finite element analysis of the dynamic characteristics of wind turbine blades based on the internal structure of the airfoil[J]. Journal of Changsha University of Science & Technology (natural science), 2016, 13(4): 66-73.
[6] SAJEER M M, MITRA A, CHAKRABORTY A.Spinning finite element analysis of longitudinally stiffened horizontal axis wind turbine blade for fatigue life enhancement[J]. Mechanical systems and signal processing, 2020, 145: 106924.
[7] 杨瑞, 张康康. 风力机叶片腹板缘条结构分析[J]. 机械设计与制造, 2020(11): 118-120, 124.
YANG R, ZHANG K K.Structure analysis of web chord of wind turbine blade[J]. Machinery design & manufacture, 2020(11): 118-120, 124.
[8] CHOUDHURY S, SHARMA T, SHUKLA K K.Effect of orthotropy ratio of the shear web on the aero-elasticity and torque generation of a hybrid wind turbine blade[J]. Renewable energy, 2017, 113: 1378-1387.
[9] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Laboratory, 2009.
[10] 张志强, 乔印虎, 王帅帅. 复合材料风力机叶片铺层参数优化[J]. 太阳能学报, 2023, 44(3): 97-103.
ZHANG Z Q, QIAO Y H, WANG S S.Optimization of laminating parameters for composite wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(3): 97-103.
[11] 张立, 缪维跑, 李春, 等. 基于气动弹性剪裁的大型风力机弯扭耦合叶片力学性能分析[J]. 动力工程学报, 2021, 41(8): 674-683.
ZHANG L, MIAO W P, LI C, et al.Mechanical performance analysis of large wind turbine bend-twist coupling blade based on aeroelastic tailoring[J]. Journal of Chinese society of power engineering, 2021, 41(8): 674-683.
[12] 刘虎, 周纪磊, 张荣芳, 等. 垂直振动激励下排种器振动试验台可靠性分析和验证[J]. 农机化研究, 2021, 43(8): 158-163.
LIU H, ZHOU J L, ZHANG R F, et al.Reliability analysis and verification of vibration test bench for seed meter under vertical vibration excitation[J]. Journal of agricultural mechanization research, 2021, 43(8): 158-163.
[13] 郭俊凯, 郭志文, 张建伟, 等. 小型风力机新翼型叶片动态结构响应研究[J]. 太阳能学报, 2021, 42(10): 183-188.
GUO J K, GUO Z W, ZHANG J W, et al.Research of dynamic structure response of small wind turbine blades with new airfoils[J]. Acta energiae solaris sinica, 2021, 42(10): 183-188.
[14] 潘柏松, 谢少军, 梁利华. 风机叶片叶根复合材料铺层强度特性研究[J]. 太阳能学报, 2012, 33(5): 769-775.
PAN B S, XIE S J, LIANG L H.Research of composite ply strength properties for the root of wind turbine blade[J]. Acta energiae solaris sinica, 2012, 33(5): 769-775.
[15] SODEN P D, KADDOUR A S, HINTON M J.Recommendations for designers and researchers resulting from the world-wide failure exercise[J]. Composites science and technology, 2004, 64(3/4): 589-604.
[16] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 风力发电机组风轮叶片: GB/T 25383—2010[S]. 北京: 中国标准出版社, 2011.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Wind turbine generator system—Rotor blades: GB/T 25383—2010[S]. Beijing: Standards Press of China, 2011.

基金

国家自然科学基金(51965034)

PDF(3304 KB)

Accesses

Citation

Detail

段落导航
相关文章

/