波能装置-浮式防波堤集成系统获能消波特性研究

王治林, 史宏达, 曹飞飞, 韩蒙, 易惜, 马旭

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 1-6.

PDF(1980 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1980 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 1-6. DOI: 10.19912/j.0254-0096.tynxb.2023-1748

波能装置-浮式防波堤集成系统获能消波特性研究

  • 王治林1, 史宏达1~3, 曹飞飞1~3, 韩蒙1, 易惜1, 马旭1
作者信息 +

STUDY ON ENERGY ABSORPTION AND WAVE ATTENUATION PERFORMENCES OF INTEGRATED SYSTEM OF WAVE ENERGY CONVERTER-FLOATING BREAKWATER

  • Wang Zhilin1, Shi Hongda1~3, Cao Feifei1~3, Han Meng1, Yi Xi1, Ma Xu1
Author information +
文章历史 +

摘要

基于空间共享和成本分摊理念提出一种由振荡浮子式波能装置和浮式防波堤相结合的集成系统,应用计算流体力学方法建立耦合数值模型,并研究集成系统水动力性能,分析动力输出系统(PTO)阻尼、波能装置与浮式防波堤间距、波能装置宽度对集成系统能量捕获和消波特性的影响。结果表明,所提出的集成系统相对运动优于波能装置与固定式防波堤集成系统以及单独的波能装置。PTO阻尼系数的合理选取可使集成系统具有较优的能量捕获和消波性能;间距的减小和波能装置宽度的增加可改善集成系统能量捕获性能,转换效率可达78.5%。

Abstract

Based on the concept of space sharing and cost allocation, an integrated system combining oscillating buoy type wave energy converter and floating breakwater was proposed, and a coupled numerical model was established by computational fluid dynamics method, and the hydrodynamic characteristics of the integrated system was investigated, and the effects of power take-off (PTO) damping, the gap between wave energy converter and floating breakwater, the width of wave energy converter on the energy capture and wave attenuation characteristics of the integrated system were analyzed. The results show that the relative motion of the proposed integrated system is better than that of wave energy converter and stationary breakwater integrated system and the isolated wave energy converter. The reasonable selection of PTO damping coefficient can make the integrated system get better energy capture and wave attenuation performance. The reduction of the gap and the increase in the width of the wave energy converter can improve the energy capture characteristics of the integrated system, with the conversion efficiency up to 78.5%.

关键词

波能转换 / 能量吸收 / 浮式防波堤 / 波浪透射 / 窄缝间波高

Key words

wave energy conversion / energy absorption / floating breakwaters / wave transmission / gap wave height

引用本文

导出引用
王治林, 史宏达, 曹飞飞, 韩蒙, 易惜, 马旭. 波能装置-浮式防波堤集成系统获能消波特性研究[J]. 太阳能学报. 2025, 46(3): 1-6 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1748
Wang Zhilin, Shi Hongda, Cao Feifei, Han Meng, Yi Xi, Ma Xu. STUDY ON ENERGY ABSORPTION AND WAVE ATTENUATION PERFORMENCES OF INTEGRATED SYSTEM OF WAVE ENERGY CONVERTER-FLOATING BREAKWATER[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 1-6 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1748
中图分类号: P743.2   

参考文献

[1] 马宏达, 邓义斌, 郭强波. 基于遗传算法的二自由度波浪能装置阵列优化[J]. 太阳能学报, 2022, 43(6): 264-269.
MA H D, DENG Y B, GUO Q B.Optimization of 2-dof wave energy converters array based on genetic algorithm[J]. Acta energiae solaris sinica, 2022, 43(6): 264-269.
[2] ZHAO X L, NING D Z, ZOU Q P, et al.Hybrid floating breakwater-WEC system: a review[J]. Ocean engineering, 2019, 186: 106126.
[3] 何方, 唐晓, 潘佳鹏, 等. 波能利用型圆筒透空堤水动力特性实验研究[J]. 太阳能学报, 2022, 43(12): 469-475.
HE F, TANG X, PAN J P, et al.Experimental investigation on hydrodynamic characteristics of wave-energy-utilization type cylindrical open breakwater[J]. Acta energiae solaris sinica, 2022, 43(12): 469-475.
[4] REN J Q, JIN P, LIU Y Y, et al.Wave attenuation and focusing by a parabolic arc pontoon breakwater[J]. Energy, 2021, 217: 119405.
[5] MADHI F, SINCLAIR M E, YEUNG R W.The "Berkeley wedge": an asymmetrical energy-capturing floating breakwater of high performance[J]. Marine systems & ocean technology, 2014, 9(1): 5-16.
[6] NING D Z, ZHAO X L, GÖTEMAN M, et al. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study[J]. Renewable energy, 2016, 95: 531-541.
[7] CHEN Q, ZANG J, BIRCHALL J, et al.On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater[J]. Renewable energy, 2020, 146: 414-425.
[8] JI Q L, CHEN G Q.Hydrodynamic responses of a reversed L type floating breakwater integrated with a wave energy converter impacted by extreme waves[J]. Ocean engineering, 2023, 272: 113898.
[9] 彭伟, 张继生, 范亚宁, 等. 结合防波堤的振荡摇摆式波浪能装置试验研究[J]. 太阳能学报, 2021, 42(2): 295-301.
PENG W, ZHANG J S, FAN Y N, et al.Experimental study on oscillating flap-type wave energy device integrated with breakwater[J]. Acta energiae solaris sinica, 2021, 42(2): 295-301.
[10] 于定勇, 曲铭, 谢雨嘉. 一种集成OWC气室的桩基防波堤方案设计与试验研究[J]. 太阳能学报, 2021, 42(10): 379-386.
YU D Y, QU M, XIE Y J.Design and experimental study of a pile-based breakwater integrated OWC air chamber[J]. Acta energiae solaris sinica, 2021, 42(10): 379-386.
[11] ZHAO X L, NING D Z.Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons[J]. Energy, 2018, 155: 226-233.
[12] ZHANG H M, ZHOU B Z, VOGEL C, et al.Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter[J]. Applied energy, 2020, 259: 114212.
[13] ZHANG H M, ZHOU B Z, ZANG J, et al.Effects of narrow gap wave resonance on a dual-floater WEC-breakwater hybrid system[J]. Ocean engineering, 2021, 225: 108762.
[14] GODA Y, SUZUKI Y.Estimation of incident and reflected waves in random wave experiments[C]//Coastal Engineering 1976. Honolulu, Hawaii, USA, 1977.

基金

国家自然科学基金(52271297; 52071303); 国家自然科学基金联合基金重点项目(U22A20216); 泰山学者工程专项经费资助(ts20190914)

PDF(1980 KB)

Accesses

Citation

Detail

段落导航
相关文章

/