风轮不平衡载荷下超大型风电机组叶片颤振极限研究

田德, 李贝, 吴晓璇, 孟慧雯, 王浩东, 苏怡

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 198-205.

PDF(3903 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3903 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 198-205. DOI: 10.19912/j.0254-0096.tynxb.2023-1751

风轮不平衡载荷下超大型风电机组叶片颤振极限研究

  • 田德, 李贝, 吴晓璇, 孟慧雯, 王浩东, 苏怡
作者信息 +

STUDY ON FLUTTER LIMIT OF ULTRA-LARGE WIND TURBINE BLADES UNDER ROTOR IMBALANCE LOADS

  • Tian De, Li Bei, Wu Xiaoxuan, Meng Huiwen, Wang Haodong, Su Yi
Author information +
文章历史 +

摘要

以IEA Wind 15 MW 参考风电机组为研究对象,基于非线性时域气弹耦合分析工具,研究风剪切、偏航入流、质量不平衡3种不平衡载荷单一或共同作用时,超大型风电机组叶片的颤振极限。结果表明,单一不平衡载荷作用时,风剪切和±15°以内的偏航角会增大临界颤振速度,而质量不平衡会降低临界颤振速度,且质量偏重时颤振速度下降更加明显。3种不平衡载荷共同作用时,临界颤振速度的最大值和最小值都出现在剪切系数为0.3时;最大值总是在偏航角为非负值时取得,最小值在偏航角为-20°时取得;质量不平衡对临界颤振速度的影响与其单一作用时的规律一致。因此,在进行气弹稳定性分析时,应考虑多种风轮不平衡载荷共同作用,尤其是叶片质量偏重和偏航角度为-20°时这种最不利的情况。

Abstract

This study focuses on the IEA Wind 15 MW Reference Wind Turbine and investigates the flutter limit of ultra-large wind turbine blades under imbalanced loads such as wind shear, yaw inflow, and mass imbalance. The results show that under a single unbalonced load, both wind shear and yaw misalignment within ±15° increases the critical flutter speed. Conversely, mass imbalance reduces the critical flutter speed, and the flutter speed is decreased more obviously under heavy mass. When all three imbalanced loads act simultaneously, the critical flutter speed exhibit maximum and minimum values at a shear coefficient of 0.3. The maximum value consistently occurs at a non-negative yaw angle, while the minimum value is observed at a yaw angle of -20°. The impact of mass imbalance on the critical flutter speed is consistent with that of single unbalanced load action. Therefore, it is crucial to consider the combined effects of multiple rotor imbalanced loads, particularly in the unfavorable scenario of heavier blade mass and a yaw angle is-20°, when conducting aeroelastic stability analysis.

关键词

风电机组叶片 / 颤振 / 稳定性 / 气动弹性 / 风轮不平衡载荷

Key words

wind turbine blades / flutter / stability / aeroelasticity / rotor imbalance loads

引用本文

导出引用
田德, 李贝, 吴晓璇, 孟慧雯, 王浩东, 苏怡. 风轮不平衡载荷下超大型风电机组叶片颤振极限研究[J]. 太阳能学报. 2024, 45(2): 198-205 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1751
Tian De, Li Bei, Wu Xiaoxuan, Meng Huiwen, Wang Haodong, Su Yi. STUDY ON FLUTTER LIMIT OF ULTRA-LARGE WIND TURBINE BLADES UNDER ROTOR IMBALANCE LOADS[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 198-205 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1751
中图分类号: TK83   

参考文献

[1] GWEC. Global Offshore Wind Report 2021[R]. 2021.
[2] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464): eaau2027.
[3] CHANG L, YU Y J, LIU T R.Aeroelastic flutter and sliding mode control of wind turbine blade[J]. Shock and vibration, 2020, 2020: 1-8.
[4] SHAKYA P, SUNNY M R, MAITI D K.Nonlinear flutter analysis of a bend-twist coupled composite wind turbine blade in time domain[J]. Composite structures, 2022, 284:115216.
[5] HACH O, VERDONCK H, POLMAN J D, et al.Wind turbine stability: comparison of state-of-the-art aeroelastic simulation tools[J]. Journal of physics: conference series, 2020, 1618(5): 052048.
[6] HUA X G, MENG Q S, CHEN B, et al.Structural damping sensitivity affecting the flutter performance of a 10-MW offshore wind turbine[J]. Advances in structural engineering, 2020, 23(14): 3037-3047.
[7] HüBNER G R, PINHEIRO H, DE SOUZA C E, et al. Detection of mass imbalance in the rotor of wind turbines using support vector machine[J]. Renewable energy, 2021, 170:49-59.
[8] REZAEIHA A, PEREIRA R, KOTSONIS M.Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine[J]. Renewable energy, 2017, 114: 904-916.
[9] TANG S Z, TIAN D, FANG J J, et al.Individual pitch controller characteristics analysis and optimization under aerodynamic imbalanced loads of wind turbines[J]. Energy reports, 2021, 7: 6489-6500.
[10] 田德, 方建驹, 刘枫, 等. 大型风电机组模型预测独立变桨控制器设计[J]. 太阳能学报, 2022, 43(4): 461-467.
TIAN D, FANG J J, LIU F, et al.Design of model predictive individual pitch controller for large-scale wind turbine[J]. Acta energiae solaris sinica, 2022, 43(4): 461-467.
[11] 马磊明, 肖玲斐, 姜斌. 基于自适应非奇异智能终端滑模观测器的风力机载荷增广预测控制[J]. 太阳能学报, 2022, 43(11): 259-268.
MA L M, XIAO L F, JIANG B.Augmented predictive intelligent control of wind turbine load based on adaptive nonsingular terminal sliding mode observer[J]. Acta energiae solaris sinica, 2022, 43(11): 259-268.
[12] PIRRUNG G R, MADSEN H A, KIM T.The influence of trailed vorticity on flutter speed estimations[J]. Journal of physics: conference series, 2014, 524(1): 012048.
[13] LARSEN T J, HANSEN A M.How 2 HAWC2, the user's manual[R]. Roskilde, Denmark:DTU Wind Energy, 2019.
[14] GAERTNER E, RINKER J, SETHURAMAN L, et al.Definition of the IEA wind 15-megawatt offshore reference wind turbine[R]. National Renewable Energy Laboratory, 2020.
[15] RINKER J, GAERTNER E, ZAHLE F, et al.Comparison of loads from HAWC2 and OpenFAST for the IEA wind 15 MW reference wind turbine[J]. Journal of physics: conference series, 2020, 1618(5): 052052.
[16] 李贝, 田德, 唐世泽, 等. 超大型风电机组叶片颤振分析及参数灵敏度研究[J]. 太阳能学报, 2023, 44(9): 295-301.
LI B, TIAN D, TANG S Z, et al.Flutter analysis and parameter sensitivity study of ultra-large wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(9): 295-301.
[17] EL KHCHINE Y, SRITI M.Tip loss factor effects on aerodynamic performances of horizontal axis wind turbine[J]. Energy procedia, 2017, 118:136-140.
[18] HANSEN M H.A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations[R]. Riso National Laboratory, Denmark, 2004.
[19] MADSEN H A, LARSEN T J, PIRRUNG G R, et al.Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact[J]. Wind energy science, 2020, 5(1): 1-27.
[20] KIM T, HANSEN A M, BRANNER K.Development of an anisotropic beam finite element for composite wind turbine blades in multibody system[J]. Renewable energy, 2013, 59: 172-183.
[21] BAK C, ZAHLE F, BITSCHE R, et al.The DTU 10-MW reference wind turbine[R]. Roskilde, Denmark: DTU Wind Energy, 2013.
[22] LIU Y Q, QIAO Y H, HAN S, et al.Rotor equivalent wind speed calculation method based on equivalent power considering wind shear and tower shadow[J]. Renewable energy, 2021, 172: 882-896.
[23] DAI J C, YANG X, HU W, et al.Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149(APR.15): 684-696.
[24] GRIFFITH D T, CHETAN M.Assessment of flutter prediction and trends in the design of large-scale wind turbine rotor blades[J]. Journal of physics: conference series, 2018, 1037: 042008.

基金

国家重点研发计划课题(2018YFB1501304)

PDF(3903 KB)

Accesses

Citation

Detail

段落导航
相关文章

/