基于金属氧化物载流子选择性传输层的硅异质结太阳电池的研究进展

胡梦琪, 苏炬, 王光红, 刁宏伟, 赵雷, 王文静

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 342-347.

PDF(2107 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2107 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 342-347. DOI: 10.19912/j.0254-0096.tynxb.2023-1755

基于金属氧化物载流子选择性传输层的硅异质结太阳电池的研究进展

  • 胡梦琪1,2, 苏炬1,2, 王光红1,2, 刁宏伟1, 赵雷1,2, 王文静1~3
作者信息 +

RESEARCH PROGRESS OF CRYSTALLINE SILICON HETEROJUNCTION SOLAR CELLS WITH METAL OXIDE CARRIER-SELECTIVE CONTACTS

  • Hu Mengqi1,2, Su Ju1,2, Wang Guanghong1,2, Diao Hongwei1, Zhao Lei1,2, Wang Wenjing1~3
Author information +
文章历史 +

摘要

晶硅异质结(HJT)太阳电池的转换效率已达到26.81%,然而其使用有毒有害气体掺杂的传输层存在不可避免的寄生吸收损失,阻止了器件性能的进一步提升。因此,宽带隙非掺杂的钝化接触太阳电池受到极大关注。该文对载流子选择性传输原理、非掺杂钝化接触材料及其主要沉积方法、非掺杂空穴/电子选择性材料的研究现状及器件稳定性改善方式进行概述,并对钝化接触型非掺杂晶硅异质结太阳电池存在的问题和前景进行讨论。

Abstract

The conversion efficiency of crystalline silicon heterojunction (HJT) solar cells has reached 26.81%, however, there are unavoidable parasitic absorption losses in their transport layer doped with toxic and hazardous gases, preventing further improvement of device performance. Therefore, wide bandgap dopant-free passivated contact solar cells have received great attention. This paper provides an overview of the carrier-selective transport principle, dopant-free passivated contact materials and their main deposition methods, the current research status of dopant-free hole/electron-selective materials and the improvement of device stability. The problems and prospects of passivation contact type dopant-free crystalline silicon heterojunction solar cells are also discussed.

关键词

载流子传输 / 过渡金属氧化物 / 硅太阳电池 / 载流子选择性接触 / 异质结太阳电池 / 非掺杂 / 异质结太阳电池 / 非掺杂

Key words

carrier transport / transition metal oxides / silicon solar cells / carrier-selective contacts / heterojunction solar cells / dopant-free

引用本文

导出引用
胡梦琪, 苏炬, 王光红, 刁宏伟, 赵雷, 王文静. 基于金属氧化物载流子选择性传输层的硅异质结太阳电池的研究进展[J]. 太阳能学报. 2025, 46(3): 342-347 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1755
Hu Mengqi, Su Ju, Wang Guanghong, Diao Hongwei, Zhao Lei, Wang Wenjing. RESEARCH PROGRESS OF CRYSTALLINE SILICON HETEROJUNCTION SOLAR CELLS WITH METAL OXIDE CARRIER-SELECTIVE CONTACTS[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 342-347 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1755
中图分类号: O472   

参考文献

[1] WÜRFEL U, CUEVAS A, WÜRFEL P. Charge carrier separation in solar cells[J]. IEEE journal of photovoltaics, 2015, 5(1): 461-469.
[2] YU J, FU Y M, ZHU L Q, et al.Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide[J]. Solar energy, 2018, 159: 704-709.
[3] MESSMER C, BIVOUR M, SCHÖN J, et al. Numerical simulation of silicon heterojunction solar cells featuring metal oxides as carrier-selective contacts[J]. IEEE journal of photovoltaics, 2018, 8(2): 456-464.
[4] YANG X B, BI Q Y, ALI H, et al.High-performance TiO2-based electron-selective contacts for crystalline silicon solar cells[J]. Advanced materials, 2016, 28(28): 5891-5897.
[5] VIJAYAN R A, MASILAMANI S, KAILASAM S, et al.Study of surface passivation and charge transport barriers in DASH solar cell[J]. IEEE journal of photovoltaics, 2019, 9(5): 1208-1216.
[6] DRÉON J, JEANGROS Q, CATTIN J, et al. 23.5%- efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact[J]. Nano energy, 2020, 70: 104495.
[7] RAO C.Transition metal oxides[J]. Annual review of physical chemistry, 1989, 40: 291-326.
[8] GREINER M T, CHAI L, HELANDER M G, et al.Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies[J]. Advanced functional materials, 2012, 22(21): 4557-4568.
[9] GREINER M T, CHAI L, HELANDER M G, et al.Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3[J]. Advanced functional materials, 2013, 23(2): 215-226.
[10] KAMIOKA T, HAYASHI Y, ISOGAI Y, et al.Effect of ITO capping layer on interface workfunction of MoOx in ITO/MoOx/SiO2/Si contacts[C]//2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). Waikoloa, HI, USA, 2018: 2024-2026.
[11] IRFAN, DING H J, GAO Y L, et al. Energy level evolution of molybdenum trioxide interlayer between indium tin oxide and organic semiconductor[J]. Applied physics letters, 2010, 96(7): 073304.
[12] CAO L Q, PROCEL P, ALCAÑIZ A, et al. Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interface[J]. Progress in photovoltaics: research and applications, 2023, 31(12): 1245-1254.
[13] ALMORA O, GERLING L G, VOZ C, et al.Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2017, 168: 221-226.
[14] BIVOUR M, ZÄHRINGER F, NDIONE P, et al. Sputter-deposited WOx and MoOx for hole selective contacts[J]. Energy procedia, 2017, 124: 400-405.
[15] ZIELKE D, NIEHAVES C, LÖVENICH W, et al. Organic-silicon solar cells exceeding 20% efficiency[J]. Energy procedia, 2015, 77: 331-339.
[16] DING J N, ZHOU Y R, DONG G Q, et al.Solution-processed ZnO as the efficient passivation and electron selective layer of silicon solar cells[J]. Progress in photovoltaics: research and applications, 2018, 26(12): 974-980.
[17] 白宇, 何佳龙, 李君君, 等. 光电性能可调的TiN薄膜及在TOPCon太阳电池的应用[J]. 太阳能学报, 2023, 44(9): 72-77.
BAI Y, HE J L, LI J J, et al.TiN thin film with adjustable photoelectric performance and its application in TOPCon solar cell[J]. Acta energiae solaris sinica, 2023, 44(9): 72-77.
[18] YANG X B, AYDIN E, XU H, et al.Tantalum nitride electron-selective contact for crystalline silicon solar cells[J]. Advanced energy materials, 2018, 8(20): 1800608.
[19] WANG Y H, GU Z Y, LI L, et al.Interfacial engineering of ZnS passivating contacts for crystalline silicon solar cells achieving 20% efficiency[J]. Materials today energy, 2023, 35: 101336.
[20] LIU Z L, LIN H, WANG Z L, et al.Dual functional dopant-free contacts with titanium protecting layer: boosting stability while balancing electron transport and recombination losses[J]. Advanced science, 2022, 9(23): 2202240.
[21] ALLEN T G, BULLOCK J, ZHENG P T, et al.Calcium contacts to n-type crystalline silicon solar cells[J]. Progress in photovoltaics: research and applications, 2017, 25(7): 636-644.
[22] YANG X, YING Z Q, YANG Z H, et al.Light-promoted electrostatic adsorption of high-density Lewis base monolayers as passivating electron-selective contacts[J]. Advanced science, 2021, 8(5): 2003245.
[23] REICHEL C, WÜRFEL U, WINKLER K, et al. Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells[J]. Journal of applied physics, 2018, 123(2): 024505.
[24] LOU X L, WANG X Y, XU D C, et al.Polymeric hole-selective contact for crystalline silicon solar cells[J]. Solar RRL, 2023, 7(24): 2300796.
[25] YANG X B, XU H, LIU W Z, et al.Atomic layer deposition of vanadium oxide as hole-selective contact for crystalline silicon solar cells[J]. Advanced electronic materials, 2020, 6(8): 2000467.
[26] WEI Y J, YU G Q, LUO G H, et al.Tunable hole-selective transport by solution-processed MoO3-x via doping for p-type crystalline silicon solar cells[J]. Solar RRL, 2023, 7(10): 2300023.
[27] BULLOCK J, CUEVAS A, ALLEN T, et al.Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells[J]. Applied physics letters, 2014, 105(23): 232109.
[28] BULLOCK J, HETTICK M, GEISSBÜHLER J, et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts[J]. Nature energy, 2016, 1(3): 15031.
[29] BULLOCK J, WAN Y M, XU Z R, et al.Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%[J]. ACS energy letters, 2018, 3(3): 508-513.
[30] BIVOUR M, TEMMLER J, ZÄHRINGER F, et al. High work function metal oxides for the hole contact of silicon solar cells[C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). Portland, OR, USA, 2016: 215-220.
[31] ESSIG S, DRÉON J, WERNER J, et al. MoOx and WOxbased hole-selective contacts for wafer-based Si solar cells[C]//2017 IEEE 44th Photovoltaic Specialist Conference (PVSC). Washington, DC, USA, 2017: 55-58.
[32] LIN W J, WU W L, LIU Z T, et al.Chromium trioxide hole-selective heterocontacts for silicon solar cells[J]. ACS applied materials & interfaces, 2018, 10(16): 13645-13651.
[33] ZHANG W, SHEN H L, YIN M, et al.Heterostructure silicon solar cells with enhanced power conversion efficiency based on Six/Ni3+ self-doped NiOx passivating contact[J]. ACS omega, 2022, 7(19): 16494-16501.
[34] LIAO B C, HOEX B, ABERLE A G, et al.Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide[J]. 2014, 104(25): 253903.
[35] SAHASRABUDHE G, RUPICH S M, JHAVERI J, et al.Low-temperature synthesis of a TiO2/Si heterojunction[J]. Journal of the American Chemical Society, 2015, 137(47): 14842-14845.
[36] YANG X B, WEBER K, HAMEIRI Z, et al.Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells[J]. Progress in photovoltaics: research and applications, 2017, 25(11): 896-904.
[37] BULLOCK J, WAN Y M, HETTICK M, et al.Dopant-free partial rear contacts enabling 23% silicon solar cells[J]. Advanced energy materials, 2019, 9(9): 1803367.
[38] MEYER J, HAMWI S, KRÖGER M, et al. Transition metal oxides for organic electronics: energetics, device physics and applications[J]. Advanced materials, 2012, 24(40): 5408-5427.
[39] ESSIG S, DRÉON J, RUCAVADO E, et al. Toward annealing-stable molybdenum-oxide-based hole-selective contacts for silicon photovoltaics[J]. Solar RRL, 2018, 2(4): 1700227.
[40] ALI H, YANG X B, WEBER K, et al.Transmission electron microscopy studies of electron-selective titanium oxide contacts in silicon solar cells[J]. Microscopy and microanalysis, 2017, 23(5): 900-904.
[41] LIN W J, BOCCARD M, ZHONG S H, et al.Degradation mechanism and stability improvement of dopant-free ZnO/LiFx/Al electron nanocontacts in silicon heterojunction solar cells[J]. ACS applied nano materials, 2020, 3(11): 11391-11398.
[42] CAO S Y, LI J Y, ZHANG J, et al.Stable MoOx-based heterocontacts for p-type crystalline silicon solar cells achieving 20% efficiency[J]. Advanced functional materials, 2020, 30(49): 2004367.
[43] BULLOCK J, YAN D, WAN Y, et al.Amorphous silicon passivated contacts for diffused junction silicon solar cells[J]. Journal of applied physics, 2014, 115(16): 163703.
[44] CAO S Y, LI J Y, LIN Y Y, et al.Interfacial behavior and stability analysis of p-type crystalline silicon solar cells based on hole-selective MoOx/metal contacts[J]. Solar RRL, 2019, 3(11): 1970105.
[45] LI J Y, PAN T Y, WANG J L, et al.Bilayer MoOx/CrOx passivating contact targeting highly stable silicon heterojunction solar cells[J]. ACS applied materials & interfaces, 2020, 12(32): 36778-36786.
[46] LIU Z L, LIN H, WU T J, et al.Tailoring protective metals for high-efficient and stable dopant-free crystalline silicon solar cells[J]. Solar energy materials and solar cells, 2023, 256: 112343.
[47] 王梦笑, 王光红, 赵雷, 等. 用于晶硅异质结太阳电池的透明导电薄膜研究进展[J]. 太阳能学报, 2023, 44(11): 16-22.
WANG M X, WANG G H, ZHAO L, et al.Research progress of tco films for silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2023, 44(11): 16-22.
[48] DU G L, LI L, ZHU H Y, et al.High-performance hole-selective V2Ox/SiOx/NiOx contact for crystalline silicon solar cells[J]. EcoMat, 2022, 4(3): e12175.
[49] LI L, DU G L, LIN Y Y, et al.NiOx/MoOx bilayer as an efficient hole-selective contact in crystalline silicon solar cells[J]. Cell reports physical science, 2021, 2(12): 100684.
[50] WANG Z L, LIU Z L, LIN H, et al.Hot wire Oxidation-Sublimation derived work function tunable WOx thin films for building hole-selective contacts[J]. Materials today energy, 2023, 38: 101439.

基金

国家自然基金区域创新发展联合基金(U21A2072); 国家自然科学基金(62174161); 江苏省碳达峰碳中和科技创新专项资金项目(BE2022021-4)

PDF(2107 KB)

Accesses

Citation

Detail

段落导航
相关文章

/