预制装配式混凝土风电机组塔架干连接环向接缝抗扭承载力

李金威, 陈俊岭, 林长丰, 林文敏, 王志成

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 538-545.

PDF(2693 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2693 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 538-545. DOI: 10.19912/j.0254-0096.tynxb.2023-1771

预制装配式混凝土风电机组塔架干连接环向接缝抗扭承载力

  • 李金威, 陈俊岭, 林长丰, 林文敏, 王志成
作者信息 +

TORSIONAL LOAD BEARING CAPACITY OF CIRCUMFERENTIAL DRY JOINTS IN PREFABRICATED CONCRETE WIND TURBINE TOWER

  • Li Jinwei, Chen Junling, Lin Changfeng, Lin Wenmin, Wang Zhicheng
Author information +
文章历史 +

摘要

预制装配式钢-混凝土混合式风电机组塔架中的混凝土塔段常采用分段预制、各分段间环向接缝干连接的方式制作和现场拼装。该文根据混凝土塔段环向接缝的受力特征,推导竖向力和弯矩共同作用下环向接缝的抗扭承载力积分表达式,通过Python编程计算其抗扭承载力。选用两组ABAQUS精细化有限元模拟结果与已有的铝管水平接缝抗扭承载力试验结果对比,验证提出的理论积分公式和计算程序的准确性。最后,选用工程中混凝土塔段常用的典型尺寸和竖向力,采用所提出的计算方法开展15组算例,在此基础上提出抗扭承载力的6参数计算模型,并通过最小二乘法拟合确定参数取值,给出可供预制装配式混凝土混合式风电机组塔架工程应用的环向接缝抗扭承载力设计公式。

Abstract

The concrete section of one prefabricated steel-concrete wind turbine tower is usually fabricated segmentally in the factory and assembled on site by means of circumferential dry connection between segments. In this paper, according to the structural characteristics of circumferential joints between segments, the torsional load capacity of the circumferential joints between concrete segments under the interaction of vertical force and bending moment is derived as one integral expression and calculated by Python programming. The accuracy of the theoretical integral equation and the Python program is verified by comparing the results of two sets of ABAQUS refined finite element simulation with the published test results of the torsional load capacity for the circumferential joints between aluminum tubes. Finally, the torsional load capacities of 15 concrete segment cases with typical sizes and vertical forces are carried out by the proposed method. A 6-parameter model predicting the torsional load bearing capacity of the circumferential joints is proposed, and the values of these parameters are determined by least squares method. The design formula is proposed for the torsional load bearing capacity of the circumferential joints between concrete segments in prefabricated steel-concrete wind turbine towers.

关键词

风电机组 / 塔架 / 扭转 / 承载力 / 干连接 / 设计方法

Key words

wind turbines / towers / torsion / bearing capacity / dry joints / design method

引用本文

导出引用
李金威, 陈俊岭, 林长丰, 林文敏, 王志成. 预制装配式混凝土风电机组塔架干连接环向接缝抗扭承载力[J]. 太阳能学报. 2025, 46(3): 538-545 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1771
Li Jinwei, Chen Junling, Lin Changfeng, Lin Wenmin, Wang Zhicheng. TORSIONAL LOAD BEARING CAPACITY OF CIRCUMFERENTIAL DRY JOINTS IN PREFABRICATED CONCRETE WIND TURBINE TOWER[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 538-545 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1771
中图分类号: TU312   

参考文献

[1] SEIDL G, HIERL M, BREU M, et al.Segmentbrücke greißelbach als stahlverbundbrücke ohne abdichtung und asphalt[J]. Stahlbau, 2016, 85(2): 126-136.
[2] RETTINGER M, HÜCKLER A, SCHLAICH M. Technologien und entwicklungen im segmentbrückenbau[J]. Beton-und stahlbetonbau, 2021, 116(S2): 12-23.
[3] VON DER HAAR C, MARX S. Design aspects of concrete towers for wind turbines[J]. Journal of the South African institution of civil engineering, 2015, 57(4): 30-37.
[4] 陈俊岭, 高洁, 赵邦州, 等. 风电机组钢塔架与钢-混凝土组合塔架动力响应对比分析[J]. 太阳能学报, 2023, 44(3): 225-231.
CHEN J L, GAO J, ZHAO B Z, et al.Comprehensive analysis of dynamic response of steel and steel-concrete combined wind turbine towers[J]. Acta energiae solaris sinica, 2023, 44(3): 225-231.
[5] 师振贵, 王云超, 黄赐荣, 等. 干式连接装配式风电混塔非线性特征研究[J]. 太阳能学报, 2024, 45(6): 564-571.
SHI Z G, WANG Y C, HUANG C R, et al.Research on nonlinear characteristics of dry-connected prefabricated wind turbine hybrid tower[J]. Acta energiae solaris sinica, 2024, 45(6): 564-571.
[6] 宋欢, 丛欧, 郝华庚, 等. 预制混凝土塔架水平缝连接节点受力性能研究[J]. 建筑结构, 2016, 46(14): 16-20.
SONG H, CONG O, HAO H G, et al.Research on mechanical behaviors of horizontal joint connection of prefabricated concrete towers[J]. Building structure, 2016, 46(14): 16-20.
[7] GRÜNBERG J, GÖHLMANN J. Concrete structures for wind turbines[M]. Berlin: Wiley, 2013.
[8] KANG C J, HARTWIG S, MARX S.Behavior of externally prestressed segmental towers’ dry joint under torsion effects[J]. Structural concrete, 2019, 20(4): 1350-1357.
[9] HARTWIG S, MARX S.Zum Torsionstragverhalten extern vorgespannter Kreissegmente mit trockenen Fugen[J]. Beton- und stahlbetonbau, 2017, 112(11): 740-746.
[10] MOHAMAD M E, IBRAHIM I S, ABDULLAH R, et al.Friction and cohesion coefficients of composite concrete-to-concrete bond[J]. Cement and concrete composites, 2015, 56: 1-14.
[11] HARTWIG S, MARX S.Modellentwicklung torsionsbeanspruchter kreisringsegmente mit trockenen fugen[J]. Beton- und stahlbetonbau, 2021, 116(5): 370-377.
[12] HARTWIG S, MIDDENDORF J.Erweitertes torsionstragmodell extern vorgespannter kreisringsegmente mit trockenen fugen: interaktionsmodell zur bestimmung der torsionstragfähigkeit unter querkraft und biegung[J]. Beton-und stahlbetonbau, 2021, 116(8): 632-640.
[13] LOH L, GARG A.Torsionstragverhalten von betonhohlquerschnitten in geschlossenen und klaffenden segmentfugen[J]. Beton-und stahlbetonbau, 2020, 115(11): 838-847.
[14] LOH L, GARG A.Torsionstragverhalten von betonhohlquerschnitten in geschlossenen und klaffenden segmentfugen-teil 2: die umlagerung der torsionsschubspannungen[J]. Beton-und stahlbetonbau. 2021, 116(11): 871-880.
[15] KLEIN F, FÜRLL F, BETZ T, et al. Experimental study on the joint bearing behavior of segmented tower structures subjected to normal and bending shear loads[J]. Structural concrete, 2022, 23(3): 1370-1384.
[16] The International Federation for Structural Concrete. Fib model code for concrete structures 2010[S]. Berlin: Wiley, 2013.

基金

国家自然科学基金面上项目(51978528); 中国电力建设股份有限公司科技项目(DJ-ZDXM-2021-14)

PDF(2693 KB)

Accesses

Citation

Detail

段落导航
相关文章

/