基于改进PSO-LGWO算法的光伏最大功率踪研究

王钰霖, 孙丽颖

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 328-334.

PDF(1938 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1938 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 328-334. DOI: 10.19912/j.0254-0096.tynxb.2023-1775

基于改进PSO-LGWO算法的光伏最大功率踪研究

  • 王钰霖, 孙丽颖
作者信息 +

RESEARCH ON PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING BASED ON IMPROVED PSO-LGWO OPTIMIZATION

  • Wang Yulin, Sun Liying
Author information +
文章历史 +

摘要

在光伏阵列受到不均匀太阳辐照时,其输出特性曲线会出现多个峰值点,常规的最大功率点跟踪方法(MPPT)可能会陷入局部峰值点,导致光伏阵列不能在最大功率点下运行。为解决此类问题,提出一种基于改进粒子群优化的灰狼算法与莱维飞行模块相结合的算法(PSO-LGWO)。该算法在函数测试和静态阴影测试中,相较于其他灰狼算法都可在保证算法跟踪精度的同时提升收敛速度;在动态阴影测试中,相较于实际光伏发电站中常见的MPPT方法,可以跳出局部最优解,且在太阳辐照度变化较大时,在保证算法跟踪精度的同时具有更快的收敛速度。

Abstract

When the photovoltaic array is subjected to uneven solar irradiation, its output characteristic curve will have multiple peak points. The conventional maximum power point tracking (MPPT) method may fall into the local peak point, resulting in that the photovoltaic array cannot operate at the maximum power point. In order to solve such problems, an algorithm based on improved particle swarm optimization combined with grey wolf algorithm and Levy flight module (PSO-LGWO) is proposed. In the function test and static shadow test, the algorithm can improve the convergence speed while ensuring the tracking accuracy of the algorithm compared with other grey wolf algorithms. In the dynamic shadow test, compared with the common MPPT method in the actual photovoltaic power station, it can jump out of the local optimal solution. When the solar irradiance changes greatly, it has faster convergence speed while ensuring the tracking accuracy of the algorithm.

关键词

最大功率点跟踪 / 太阳电池 / 太阳能发电 / 灰狼算法 / 粒子群算法

Key words

maximum power point trackers / solar cells / solar power generation / grey wolf optimization(GWO) / particle swarm optimization(PSO)

引用本文

导出引用
王钰霖, 孙丽颖. 基于改进PSO-LGWO算法的光伏最大功率踪研究[J]. 太阳能学报. 2025, 46(3): 328-334 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1775
Wang Yulin, Sun Liying. RESEARCH ON PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING BASED ON IMPROVED PSO-LGWO OPTIMIZATION[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 328-334 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1775
中图分类号: TM615   

参考文献

[1] 范瑞祥, 尹国明, 苗洁蓉, 等. 基于参数辨识的光伏组件快速MPPT方法[J]. 太阳能学报, 2020, 41(2): 296-302.
FAN R X, YIN G M, MIAO J R, et al.A quick MPPT method of PV panel based on parameter identification[J]. Acta energiae solaris sinica, 2020, 41(2): 296-302.
[2] 花赟昊, 朱武, 郭启明. 光伏发电系统MPPT算法研究综述[J]. 电源技术, 2020, 44(12): 1855-1858.
HUA Y H, ZHU W, GUO Q M.Review of MPPT algorithm of photovoltaic power generation system[J]. Chinese journal of power sources, 2020, 44(12): 1855-1858.
[3] ELGENDY M A, ZAHAWI B, ATKINSON D J.Operating characteristics of the P&O algorithm at high perturbation frequencies for standalone PV systems[J]. IEEE transactions on energy conversion, 2015, 30(1): 189-198.
[4] ALI ELGENDY M, ATKINSON D J, ZAHAWI B.Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates[J]. IET renewable power generation, 2016, 10(2): 133-139.
[5] 聂晓华, 赖家俊. 局部阴影下光伏阵列全局最大功率点跟踪控制方法综述[J]. 电网技术, 2014, 38(12): 3279-3285.
NIE X H, LAI J J.A survey on tracking and control approaches for global maximum power point of photovoltaic arrays in partially shaded environment[J]. Power system technology, 2014, 38(12): 3279-3285.
[6] PEDEMONTE M, NESMACHNOW S, CANCELA H.A survey on parallel ant colony optimization[J]. Applied soft computing, 2011, 11(8): 5181-5197.
[7] ANBARASI M P, KANTHALAKSHMI S.Power maximization in standalone photovoltaic system: an adaptive PSO approach[J]. Soft computing, 2023, 27(12): 8223-8232.
[8] TITRI S, LARBES C, TOUMI K Y, et al.A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions[J]. Applied soft computing, 2017, 58: 465-479.
[9] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[10] 葛传九, 武鹏, 董祥祥, 等. 基于布谷鸟算法的光伏MPPT改进[J]. 太阳能学报, 2022, 43(10): 59-64.
GE C J, WU P, DONG X X, et al.Improved photovoltaic maximum power point tracking based on cuckoo search algorithm[J]. Acta energiae solaris sinica, 2022, 43(10): 59-64.
[11] 韩思鹏, 蒋晓艳, 罗意, 等. 遮阴条件下光伏MPPT自适应粒子群算法优化[J]. 太阳能学报, 2022, 43(6): 99-105.
HAN S P, JIANG X Y, LUO Y, et al.Photovoltaic mppt adaptive particle swarm optimization optimization under shading conditions[J]. Acta energiae solaris sinica, 2022, 43(6): 99-105.
[12] 王加健, 帕孜来·马合木提, 孔博龙. 基于改进樽海鞘群算法的光伏系统MPPT研究[J]. 太阳能学报, 2022, 43(4): 191-197.
WANG J J, PAZLAI·MAHEMUTI, KONG B L. Research on mppt of photovoltaic system based on improved salp swarm algorithm[J]. Acta energiae solaris sinica, 2022, 43(4): 191-197.
[13] 赵斌, 袁清, 王力, 等. 基于改进蚁狮算法的光伏多峰值MPPT控制[J]. 太阳能学报, 2021, 42(9): 132-139.
ZHAO B, YUAN Q, WANG L, et al.Multi-peak MPPT control of PV array based on improved ALO algorithm[J]. Acta energiae solaris sinica, 2021, 42(9): 132-139.
[14] CHTITA S, MOTAHHIR S, EL HAMMOUMI A, et al.A novel hybrid GWO-PSO-based maximum power point tracking for photovoltaic systems operating under partial shading conditions[J]. Scientific reports, 2022, 12(1): 10637.
[15] 毛明轩, 许钊, 崔立闯, 等. 基于改进灰狼优化算法的光伏阵列多峰MPPT研究[J]. 太阳能学报, 2023, 44(3): 450-456.
MAO M X, XU Z, CUI L C, et al.Research on multi-peak mppt of photovoltaic array based on modified gray wolf optimization algorithm[J]. Acta energiae solaris sinica, 2023, 44(3): 450-456.
[16] 王红艳, 胡冠中, 方如举. 基于简化PSO算法和扰动观察法的光伏MPPT控制[J]. 电源技术, 2023, 47(8): 1095-1098.
WANG H Y, HU G Z, FANG R J.Photovoltaic MPPT control based on simplified PSO algorithm and perturb-observe method[J]. Chinese journal of power sources, 2023, 47(8): 1095-1098.
[17] HAKLı H, UĞUZ H. A novel particle swarm optimization algorithm with Levy flight[J]. Applied soft computing, 2014, 23: 333-345.
[18] HEIDARI A A, PAHLAVANI P.An efficient modified grey wolf optimizer with Lévy flight for optimization tasks[J]. Applied soft computing, 2017, 60: 115-134.
[19] 吴玲, 张秀锦, 刘秋华, 等. 基于多元宇宙优化算法的光伏发电MPPT控制算法[J]. 太阳能学报, 2023, 44(9): 204-211.
WU L, ZHANG X J, LIU Q H, et al.MPPT control algorithm of photovoltaic power generation based on multi-verse optimization algorithm[J]. Acta energiae solaris sinica, 2023, 44(9): 204-211.

基金

辽宁省教育厅重点攻关项目(JZL201915401)

PDF(1938 KB)

Accesses

Citation

Detail

段落导航
相关文章

/