面向储能和减碳需求,以麦秸和木屑为原料,研究风电耦合生物质制甲醇技术,分析甲醇产率、储能-释能效率(即储释效率)生命周期碳排放以及甲醇纯发电和热电联产模式的差异。不分离产物气CO2时,仅CO2和CO单程转化率对甲醇产率有明显的影响,其值在0.970~1.104 kg/kg之间。电解水效率是提升储释效率的关键参数。热电联产模式的储释效率和碳排放均明显优于纯发电模式。前者模式的储释效率范围为46.1%~58.6%,接近压缩空气储能;再生电能和热能的碳排放强度范围分别为37~77 g CO2/kWh和10~21 g CO2/MJ,均大幅低于相应产品的当前碳排放水平。以木屑为原料的碳排放大幅低于以麦秸为原料的碳排放。通过捕集产物气CO2,甲醇产率、绿电功耗和储释效率降低,但能够实现生命周期零碳排放。
Abstract
Facing the demands of energy storage and decarbonization, the technology of methanol production from biomass coupled with wind power was studied using wheat straw and sawdust as feedstock. The performances were analyzed and evaluated including the methanol yield, the energy efficiency of storage-release processes (i.e., storage-release efficiency), the life cycle carbon emissions, and the differences between power generation model and cogeneration mode for methanol utilization. Without the separation of CO2 in product gas, only the one-way conversion rates of CO2 and CO have obvious impacts on the methanol yield, ranging from 0.970 to 1.104 kg/kg. The efficiency of water electrolysis is the key parameter to improve the storage-release efficiency. Both storage-release efficiency and carbon emission intensity under the cogeneration mode have significantly advantages over those under pure power generation mode. Under the cogeneration mode, the storage-release efficiency varies from 46.1% to 58.6%, which is similar to that of the compressed air energy storage. The ranges of carbon emission intensity of the regenerated electricity and thermal energy are 37-77 g CO2/kWh and 10-21 g CO2/MJ, respectively, which are significantly lower than the current levels of the products. The carbon emission intensities with sawdust as feedstock are significantly lower than those with wheat straw. This technology with separation and capture of CO2 in product gas can achieve the zero-carbon emission in the life span at the cost of decreases in the methanol yield, power rate, and storage-release efficiency.
关键词
甲醇 /
电解 /
生物质 /
储释效率 /
零碳排放
Key words
methanol /
electrolysis /
biomass /
storage-release efficiency /
zero carbon emission
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[2] ZHANG H F, WANG L G, VAN HERLE J, et al.Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer[J]. Applied energy, 2020, 270: 115113.
[3] BUTERA G, HØJGAARD JENSEN S, ØSTERGAARD GADSBØLL R, et al. Flexible biomass conversion to methanol integrating solid oxide cells and two stage gasifier[J]. Fuel, 2020, 271: 117654.
[4] 王玉亭. 基于水电解和甲醇合成的可再生能源消纳系统热力性能及经济性分析[D]. 北京: 华北电力大学, 2022.
WANG Y T.Thermal performance and economic analysis of renewable energy consumption system based on water electrolysis and methanol synthesis[D]. Beijing: North China Electric Power University, 2022.
[5] POLUZZI A, GUANDALINI G, GUFFANTI S, et al.Flexible power & biomass-to-methanol plants: design optimization and economic viability of the electrolysis integration[J]. Fuel, 2022, 310: 122113.
[6] 孙勇. 城市生活垃圾气化制燃料的技术—环境—经济性分析[D]. 广州: 华南理工大学, 2022.
SUN Y.Technical-environmental-economic analysis of gasification of municipal solid waste to produce fuel[D]. Guangzhou: South China University of Technology, 2022.
[7] DAWOOD F, ANDA M, SHAFIULLAH G M.Hydrogen production for energy: an overview[J]. International journal of hydrogen energy, 2020, 45(7): 3847-3869.
[8] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[9] FENG F, SONG G H, SHEN L H, et al.Energy efficiency analysis of biomass-based synthetic natural gas production process using interconnected fluidized beds and fluidized bed methanation reactor[J]. Clean technologies and environmental policy, 2016, 18(3): 965-971.
[10] IM-ORB K, ARPORNWICHANOP A.Process and sustainability analyses of the integrated biomass pyrolysis, gasification, and methanol synthesis process for methanol production[J]. Energy, 2020, 193: 116788.
[11] YANG S Y, LI B X, ZHENG J W, et al.Biomass-to-methanol by dual-stage entrained flow gasification: design and techno-economic analysis based on system modeling[J]. Journal of cleaner production, 2018, 205: 364-374.
[12] SONG G H, WANG L, YAO A L, et al.Technical and economic assessment of a high-quality syngas production process integrating oxygen gasification and water electrolysis: the Chinese case[J]. ACS omega, 2021, 6(42): 27851-27864.
[13] PUIG-GAMERO M, ARGUDO-SANTAMARIA J, VALVERDE J L, et al.Three integrated process simulation using aspen Plus®: pine gasification, syngas cleaning and methanol synthesis[J]. Energy conversion and management, 2018, 177: 416-427.
[14] ZHANG H F, WANG L G, PÉREZ-FORTES M, et al. Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer[J]. Applied energy, 2020, 258: 114071.
[15] ANICIC B, TROP P, GORICANEC D.Comparison between two methods of methanol production from carbon dioxide[J]. Energy, 2014, 77: 279-289.
[16] ARTEAGA-PÉREZ L E, GÓMEZ-CÁPIRO O, KARELOVIC A, et al. A modelling approach to the techno-economics of Biomass-to-SNG/Methanol systems: stand alone vs integrated topologies[J]. Chemical engineering journal, 2016, 286: 663-678.
[17] 臧楠. 甲醇精馏工艺模拟计算与优化及新工艺研究[D]. 西安: 西安石油大学, 2011.
ZANG N.Simulation calculation and optimization of methanol distillation process and research on new technology[D]. Xi'an: Xi'an Shiyou University, 2011.
[18] POLUZZI A, GUANDALINI G, GUFFANTI S, et al.Flexible power and biomass-to-methanol plants with different gasification technologies[J]. Frontiers in energy research, 2022, 9: 795673.
[19] 叶茂林, 谭烽华, 李宇萍, 等. 百吨级生物质混合醇系统能耗和温室气体排放分析[J]. 太阳能学报, 2023, 44(1): 361-368.
YE M L, TAN F H, LI Y P, et al.Analysis of energy consumption and greenhouse gas emission of 100 t/a mixed alcohol system from biomass[J]. Acta energiae solaris sinica, 2023, 44(1): 361-368.
[20] 张晟义, 张杰, 王童, 等. 我国农业生物质发电潜力评估及环境效益分析[J]. 云南农业大学学报(社会科学版), 2021, 15(4): 51-60.
ZHANG S Y, ZHANG J, WANG T, et al.The potential assessment and environment benefit analysis of agricultural biomass power generation in China[J]. Journal of Yunnan Agricultural University (social science), 2021, 15(4): 51-60.
[21] 张文智, 杨晋红, 贾艳刚. 新型储能产业发展对新型电力系统建设的促进研究[J]. 新能源科技, 2023(1): 12-17.
ZHANG W Z, YANG J H, JIA Y G.Research on the promotion of the development of new energy storage industry to the construction of new power systems[J]. New energy technology, 2023(1): 12-17.