该文建立以超临界二氧化碳循环发电系统、自由下落式颗粒吸热器及颗粒双罐储热系统组成的塔式太阳能热发电系统,以系统最大效率和最小度电成本为目标,建立热力学模型及经济性模型,对各子系统的关键参数(透平入口温度、吸热器开口尺寸及储热温差)进行分析。结果表明:当透平入口温度为680 ℃、吸热器开口尺寸为22 m×22 m及储热温差为231 ℃时,光电效率最高,为25.61%。但当透平入口温度为620 ℃、吸热器开口尺寸为18 m ×18 m及储热温差为331 ℃时,度电成本最低,为0.7726 元/kWh。
Abstract
This paper presents a solar power tower generation system consisting of a supercritical carbon dioxide power cycle, a free-falling particle receiver, and a particle dual-tank thermal storage system. The objective is to achieve the maximum efficiency and the minimum levelized cost of electricity. Thermodynamics and economic models are developed, and key parameters of each subsystem, including the turbine inlet temperature, receiver aperture size, and temperature difference of thermal storage system, are analyzed. The results show that the highest overall efficiency, reaching 25.61%, is achieved when the turbine inlet temperature is 680 ℃, the receiver aperture size is 22 m ×22 m, and the temperature difference is 231 ℃. However, the lowest levelized cost of electricity, which is 0.7726 yuan/kWh, is attained when the turbine inlet temperature is 620 ℃, the receiver aperture size is 18 m ×18 m, and the thermal storage utilization temperature difference is 331 ℃.
关键词
太阳能热发电 /
颗粒 /
二氧化碳 /
超临界 /
热力学 /
经济性分析
Key words
solar thermal power /
particles /
carbon dioxide /
supercritical /
thermodynamics /
economic analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨熠辉, 余强, 王志峰, 等. sCO2太阳能热发电流化床固体颗粒/sCO2换热器建模与仿真研究[J]. 太阳能学报, 2022, 43(8): 195-203.
YANG Y H, YU Q, WANG Z F, et al.Modeling and simulation of fluidized bed solid particle/sCO2 heat exchanger of sCO2 solar thermal power plant[J]. Acta energiae solaris sinica, 2022, 43(8): 195-203.
[2] 应振镇, 杨天锋, 陈冬, 等. 用于太阳能超临界CO2布雷顿循环的流态化颗粒换热试验与模拟[J]. 太阳能学报, 2022, 43(3): 274-281.
YING Z Z, YANG T F, CHEN D, et al.Experiment and simulation of fluidizing-particle heat exchanger for supercritical CO2 brayton cycle of CSP[J]. Acta energiae solaris sinica, 2022, 43(3): 274-281.
[3] CHRISTIAN J, HO C.Alternative designs of a high efficiency, north-facing, solid particle receiver[J]. Energy procedia, 2014, 49: 314-323.
[4] CHRISTIAN J, HO C.System design of a 1 MW north-facing, solid particle receiver[J]. Energy procedia, 2015, 69: 340-349.
[5] HO C K, CHRISTIAN J M, ROMANO D, et al.Characterization of particle flow in a free-falling solar particle receiver[J]. Journal of solar energy engineering, 2017, 139(2): 021011.
[6] SHUAI Y, WANG F Q, XIA X L, et al.Radiative properties of a solar cavity receiver/reactor with quartz window[J]. International journal of hydrogen energy, 2011, 36(19): 12148-12158.
[7] HO C K.Advances in central receivers for concentrating solar applications[J]. Solar energy, 2017, 152: 38-56.
[8] HO C K, CHRISTIAN J M, YELLOWHAIR J, et al.On-Sun testing of an advanced falling particle receiver system[C]//AIP Conference Proceedings. Cape Town, South Africa, 2016, 1734(1).
[9] WAGNER M, MA Z, MARTINEK J, et al. Systems and methods for direct thermal receivers using near blackbody configurations:U.S. Patent 9945585[P].2018-4-17. https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/10648697.
[10] YUE L, MILLS B, CHRISTIAN J, et al.Effect of quartz aperture covers on the fluid dynamics and thermal efficiency of falling particle receivers[J]. Journal of solar energy engineering, 2022, 144(4): 41008.
[11] RÖGER M, AMSBECK L, GOBEREIT B, et al. Face-down solid particle receiver using recirculation[J]. Journal of solar energy engineering, 2011, 133(3): 031009.
[12] HO C K, CHRISTIAN J M, YELLOWHAIR J, et al.Performance evaluation of a high-temperature falling particle receiver[C]//American Society of Mechanical Engineers. Busan, South Korea,2016.
[13] MILLS B, SCHROEDER B, YUE L, et al.Optimizing a falling particle receiver geometry using CFD simulations to maximize the thermal efficiency[C]//AIP Conference Proceedings. Daegu, South Korea, 2020, 2303(1).
[14] 杨竞择, 杨震, 段远源. 不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析[J]. 太阳能学报, 2022, 43(9): 125-130.
YANG J Z, YANG Z, DUAN Y Y.Thermodynamic and economic analysis of solar power tower system based on S-CO2 cycle with different installed capacity[J]. Acta energiae solaris sinica, 2022, 43(9): 125-130.
[15] 徐前, 陈洪溪. 超临界二氧化碳闭式布雷顿循环特点与应用[J]. 发电设备, 2019, 33(5): 320-324, 330.
XU Q, CHEN H X.Features and application of a supercritical carbon dioxide closed brayton cycle[J]. Power equipment, 2019, 33(5): 320-324, 330.
[16] WANG K, HE Y L, ZHU H H.Integration between supercritical CO2 brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied energy, 2017, 195: 819-836.
[17] GONZÁLEZ-PORTILLO L F, ALBRECHT K, HO C K. Techno-economic optimization of CSP plants with free-falling particle receivers[J]. Entropy, 2021, 23(1): 76.
基金
自主可控的主控网络安全防护及数据存储系统开发(2022YFB4201603)