为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。
Abstract
In order to realize the real-time adjustment of the equivalence factor in the equivalent consumption minimization strategy, an energy management strategy based on adaptive equivalent energy minimization is proposed. Firstly, an optimal equivalent factor extraction method based on multiple swarm adaptive cooperative particle swarm optimization algorithms is designed, which is structured as a two-layer optimization. In the upper-layer optimization, the optimal operation trajectories of the fuel cell system and the energy storage system are solved with the objective functions of minimizing the operating cost of the ship and minimizing the error between the final charge and the initial charge of the energy storage system; In the lower level optimization, the optimization model of the equivalence factor is established to extract the distribution of the optimal equivalence factor. Then, a neural network model with system state parameters as inputs and equivalent factors as outputs is established. The neural network model is trained using the optimal equivalent factors as training samples. Finally, the neural network model is combined with the equivalent energy minimization strategy to realize the real-time adjustment of the equivalence factor. A simulation model of the ship hybrid energy system is built in Matlab/Simulink to verify the energy management strategy based on adaptive equivalent energy minimization. The simulation results show that the final charge of the energy storage system is closer to the initial charge and the total hydrogen consumption is reduced by 1.98% compared with the equivalent energy minimization strategy based on a constant equivalence factor.
关键词
燃料电池船 /
能量管理策略 /
神经网络 /
等效因子 /
多种群自适应协同的粒子群优化算法
Key words
fuel cell ship /
energy management strategy /
equivalent factor /
neural network /
multiple swarms self-adaptive and cooperative particle swarm optimization algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 范爱龙, 严新平, 李忠奎, 等. 我国航运业绿色低碳发展的需求、路径与展望[J]. 船海工程, 2024, 53(4): 1-5, 12.
FAN A L, YAN X P, LI Z K, et al.Demand, Pathways, and prospects of green and low-carbon development in China’s shipping industry[J]. Ship & ocean engineering, 2024, 53(4): 1-5, 12.
[2] 王鑫, 涂春鸣, 郭祺, 等. 计及多堆燃料电池效率特性的氢储混合系统协调优化控制方法[J]. 电力自动化设备, 2023, 43(7): 19-26.
WANG X, TU C M, GUO Q, et al.Coordinated optimization control method of hybrid system with hydrogen and battery considering efficiency characteristics of multi-stack fuel cells[J]. Electric power automation equipment, 2023, 43(7): 19-26.
[3] ZHAO Z H.Improved fuzzy logic control-based energy management strategy for hybrid power system of FC/PV/battery/SC on tourist ship[J]. International journal of hydrogen energy, 2022, 47(16): 9719-9734.
[4] 王瑞昌, 陈志华, 明新国. 基于改进模糊逻辑控制的并联式船舶动力系统能量管理[J]. 上海交通大学学报, 2021, 55(10): 1188-1196.
WANG R C, CHEN Z H, MING X G.Energy management of parallel ship power system based on improved fuzzy logic control[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1188-1196.
[5] 苗东晓, 陈俐, 王欣然. 基于NSGA-Ⅱ优化的船舶串联式混合动力系统能量管理策略[J]. 舰船科学技术, 2022, 44(14): 113-118.
MIAO D X, CHEN L, WANG X R.Energy management strategy of marine series hybrid system based on NSGA-Ⅱ optimization[J]. Ship science and technology, 2022, 44(14): 113-118.
[6] 方斯顿, 王鸿东, 张沈习, 等. 考虑蓄电池寿命损耗的最优船舶储能系统调度[J]. 中国电机工程学报, 2020, 40(23): 7566-7578.
FANG S D, WANG H D, ZHANG S X, et al.Optimal management of shipboard energy storage system considering battery lifetime degradation[J]. Proceedings of the CSEE, 2020, 40(23): 7566-7578.
[7] 赵杨, 戴晓强, 陆震, 等. 基于人工干预下生物地理学优化算法的船舶能量管理策略[J]. 船舶工程, 2022, 44(7): 1-6, 13.
ZHAO Y, DAI X Q, LU Z, et al.Ship energy management strategy based on biogeography-based optimization with human intervention[J]. Ship engineering, 2022, 44(7): 1-6, 13.
[8] ZANELLI A, SERVETTO E, DE ARAUJO P, et al.Numerical assessment of auto-adaptive energy management strategies based on SOC feedback, driving pattern recognition and prediction techniques[J]. Energies, 2022, 15(11): 3896.
[9] TIAN X, HE R, SUN X D, et al.An ANFIS-based ECMS for energy optimization of parallel hybrid electric bus[J]. IEEE transactions on vehicular technology, 2020, 69(2): 1473-1483.
[10] 甘秀芹, 张浩彬, 张宁. 一种基于可变等效因子的燃料电池汽车等效燃料消耗最小策略[J]. 同济大学学报(自然科学版), 2021, 49(增刊1): 224-230.
GAN X Q, ZHANG H B, ZHANG N.An equivalent fuel consumption minimization strategy for fuel cell vehicles based on variable equivalent coefficient[J]. Journal of Tongji University (natural science), 2021, 49(S1): 224-230.
[11] CHOI K, BYUN J, LEE S M, et al.Adaptive equivalent consumption minimization strategy (A-ECMS) for the HEVs with a near-optimal equivalent factor considering driving conditions[J]. IEEE transactions on vehicular technology, 2022, 71(3): 2538-2549.
[12] XIANG Y B, YANG X M.A DA-based ECMS for energy optimisation of parallel diesel electric hybrid ship[J]. Ships and offshore structures, 2022, 17(4): 889-904.
[13] LEE J, LEE H.A new HEV power distribution algorithm using nonlinear programming[J]. Applied sciences, 2022, 12(24): 12724.
[14] 郭伟嘉, 刘敦楠, 王文, 等. 基于智能合约的电动汽车充电服务费自适应调整机制[J]. 电力自动化设备, 2022, 42(10): 13-20, 61.
GUO W J, LIU D N, WANG W, et al.Adaptive adjustment mechanism of electric vehicle charging service FEE based on smart contract[J]. Electric power automation equipment, 2022, 42(10): 13-20, 61.
[15] ZHANG J Z, DING X M.A multi-swarm self-adaptive and cooperative particle swarm optimization[J]. Engineering applications of artificial intelligence, 2011, 24(6): 958-967.
[16] 朱镇, 曾令新, 林勇刚, 等. 融合工况预测的混合动力拖拉机自适应能量管理策略[J]. 西安交通大学学报, 2023,57(12):201-210.
ZHU Z, ZENG L X, LIN Y G, et al.Adaptive energy management strategy for hybrid tractor incorporating working condition prediction[J]. Journal of Xi’an Jiaotong University, 2023, 57(12): 201-210.
[17] 江大发, 黄海, 李旺, 等. 燃料电池混合动力机车参数匹配与等效氢耗优化能量管理方法[J]. 太阳能学报, 2023, 44(8): 68-76.
JIANG D F, HUANG H, LI W, et al.Parameter matching and equivalent hydrogen consumption for optimization energy management of fuel cell hybrid locomotive[J]. Acta energiae solaris sinica, 2023, 44(8): 68-76.
[18] CAO W, GENG P, XU X Y, et al.A power allocation strategy for fuel cell ship considering fuel cell performance difference[J]. Scientific reports, 2023, 13(1): 9905.
[19] 武鑫, 吴万哲, 白浩, 等. 基于深度神经网络的SOFC电堆温度场建模[J]. 太阳能学报, 2023, 44(7): 55-60.
WU X, WU W Z, BAI H, et al.Modelling of SOFC stack temperature field based on deep neural network[J]. Acta energiae solaris sinica, 2023, 44(7): 55-60.
基金
福建省自然科学基金(2022J011128); 上海市优秀学术和技术带头人计划(23XD1431000)