考虑季节性与趋势特征的光伏功率预测模型研究

王东风, 李青博, 张博洋, 黄宇

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 348-356.

PDF(2234 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2234 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 348-356. DOI: 10.19912/j.0254-0096.tynxb.2023-1805

考虑季节性与趋势特征的光伏功率预测模型研究

  • 王东风, 李青博, 张博洋, 黄宇
作者信息 +

RESEARCH ON PHOTOVOLTAIC POWER PREDICTION MODEL CONSIDERING SEASONALITY AND TREND CHARACTERISTICS

  • Wang Dongfeng, Li Qingbo, Zhang Boyang, Huang Yu
Author information +
文章历史 +

摘要

针对光伏功率预测中未充分考虑光伏功率季节性与趋势特征的问题,提出一种基于Neural-Prophet(NP)与深度神经网络的光伏功率预测方法。首先,通过互信息法筛选出影响光伏功率的主要因素,利用NP模型对光伏功率建模得到光伏功率的季节性与趋势特征,将季节性与趋势特征及主要影响因素作为模型输入。其次,采用改进残差网络(ResNet)和双向门控循环单元(BiGRU)建立NP-ResNet-BiGRU光伏功率预测模型并完成光伏功率预测。利用春夏秋冬四季的数据进行实验,结果显示相较于其他方法,所提方法的MAE至少提升7.44%,RMSE至少提升4.62%。

Abstract

A photovoltaic power prediction method based on Neural-Prophet (NP) and deep neural networks is proposed to address the issue of insufficient consideration of seasonal and trend characteristics of photovoltaic power in photovoltaic power prediction. Firstly, the main factors affecting photovoltaic power are selected through the mutual information method. The PV power is then modeled using the NP model to obtain the seasonal and trend characteristics of PV power. These seasonal and trend characteristics, along with the main influencing factors, are used as inputs to the model. Secondly, an NP-ResNet-BiGRU photovoltaic power prediction model was established using an improved residual network (ResNet) and a bidirectional gated loop unit (BiGRU), and the photovoltaic power prediction was completed. Experiments are conducted using data from the four seasons—spring, summer, autumn, and winter. Results show that, compared to other methods, the proposed method improves the MAE metric by at least 7.44% and the RMSE metric by at least 4.62%.

关键词

光伏发电 / 预测 / 神经网络 / 残差网络 / Neural-Prophet

Key words

photovoltaic power / forecasting / neural network / ResNet / Neural-Prophet

引用本文

导出引用
王东风, 李青博, 张博洋, 黄宇. 考虑季节性与趋势特征的光伏功率预测模型研究[J]. 太阳能学报. 2025, 46(3): 348-356 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1805
Wang Dongfeng, Li Qingbo, Zhang Boyang, Huang Yu. RESEARCH ON PHOTOVOLTAIC POWER PREDICTION MODEL CONSIDERING SEASONALITY AND TREND CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 348-356 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1805
中图分类号: TM615   

参考文献

[1] MORADZADEH A, MOAYYED H, MOHAMMADI-IVATLOO B, et al.A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization[J]. Renewable energy, 2023, 211: 697-705.
[2] 吴梦丹, 张俊礼, 吴嘉峰, 等. 基于经济模型预测控制的光伏光热一体化热泵系统动态能效优化[J]. 中国电机工程学报, 2023, 43(6): 2119-2130.
WU M D, ZHANG J L, WU J F, et al.Dynamic energy efficiency optimization of photovoltaic/thermal integrated heat pump system based on economic model predictive control[J]. Proceedings of the CSEE, 2023, 43(6): 2119-2130.
[3] 袁建华, 谢斌斌, 何宝林, 等. 基于DTW-VMD-PSO-BP的光伏发电功率短期预测方法[J]. 太阳能学报, 2022, 43(8): 58-66.
YUAN J H, XIE B B, HE B L, et al.Short term forecasting method of photovoltaic output based on DTW-VMD-PSO-BP[J]. Acta energiae solaris sinica, 2022, 43(8): 58-66.
[4] ZHANG L, HE Y, WU H B, et al.Ultra-short-term multi-step probability interval prediction of photovoltaic power: a framework with time-series-segment feature analysis[J]. Solar energy, 2023, 260: 71-82.
[5] 刘兴冉, 张宏晔, 闫海明, 等. 区域复杂地形晴日太阳辐射估算研究[J]. 太阳能学报, 2022, 43(8): 174-180.
LIU X R, ZHANG H Y, YAN H M, et al.Estimation of regional solar radiation on clear days over complex terrian[J]. Acta energiae solaris sinica, 2022, 43(8): 174-180.
[6] SUN L, YOU F Q.Machine learning and data-driven techniques for the control of smart power generation systems: an uncertainty handling perspective[J]. Engineering, 2021, 7(9): 1239-1247.
[7] 吴春华, 董阿龙, 李智华, 等. 基于图相似日和PSO-XGBoost的光伏功率预测[J]. 高电压技术, 2022, 48(8): 3250-3259.
WU C H, DONG A L, LI Z H, et al.Photovoltaic power prediction based on graph similarity day and PSO-XGBoost[J]. High voltage engineering, 2022, 48(8): 3250-3259.
[8] 薛阳, 燕宇铖, 贾巍, 等. 基于改进灰狼算法优化长短期记忆网络的光伏功率预测[J]. 太阳能学报, 2023, 44(7): 207-213.
XUE Y, YAN Y C, JIA W, et al.Photovoltaic power prediction model based on IGWO-LSTM[J]. Acta energiae solaris sinica, 2023, 44(7): 207-213.
[9] MAYER M J, YANG D Z.Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains[J]. Renewable and sustainable energy reviews, 2022, 168: 112821.
[10] KEDDOUDA A, IHADDADENE R, BOUKHARI A, et al.Solar photovoltaic power prediction using artificial neural network and multiple regression considering ambient and operating conditions[J]. Energy conversion and management, 2023, 288: 117186.
[11] 吉兴全, 赵国航, 叶平峰, 等. 基于QMD-HBiGRU的短期光伏功率预测方法[J]. 高电压技术, 2024, 50(9): 3850-3859.
JI X Q,ZHANG G H,YE P F,et al.Short term photovoltaic power prediction method based on QMD-HBiGRU[J]. High voltage engineering, 2024, 50(9): 3850-3859.
[12] 张群, 唐振浩, 王恭, 等. 基于长短时记忆网络的超短期风功率预测模型[J]. 太阳能学报, 2021, 42(10): 275-281.
ZHANG Q, TANG Z H, WANG G, et al.Ultra-short-term wind power prediction model based on long and short term memory network[J]. Acta energiae solaris sinica, 2021, 42(10): 275-281.
[13] 李宏扬, 高丙朋. 基于改进VMD和SNS-Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2023, 44(8): 292-300.
LI H Y, GAO B P.Short-term PV power forecasting based on improved VMD and SNS-Attention-GRU[J]. Acta energiae solaris sinica, 2023, 44(8): 292-300.
[14] 董雪, 赵宏伟, 赵生校, 等. 基于SOM聚类和二次分解的BiGRU超短期光伏功率预测[J]. 太阳能学报, 2022, 43(11): 85-93.
DONG X, ZHAO H W, ZHAO S X, et al.Ultra-short-term forecasting method of photovoltaic power based on SOM clustering, secondary decomposition and BiGRU[J]. Acta energiae solaris sinica, 2022, 43(11): 85-93.
[15] 王晓霞, 俞敏, 冀明, 等. 基于气候相似性与SSA-CNN-LSTM的光伏功率组合预测[J]. 太阳能学报, 2023, 44(6): 275-283.
WANG X X, YU M, JI M, et al.Photovoltaic power combination forecasting based on climate similarity and SSA-CNN-LSTM[J]. Acta energiae solaris sinica, 2023, 44(6): 275-283.
[16] 王琛, 王颖, 郑涛, 等. 基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J]. 电工技术学报, 2022, 37(7): 1789-1799.
WANG C, WANG Y, ZHENG T, et al.Multi-energy load forecasting in integrated energy system based on ResNet-LSTM network and attention mechanism[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1789-1799.
[17] GUO L, FANG W G, ZHAO Q H, et al.The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality[J]. Computers & industrial engineering, 2021, 161: 107598.
[18] XIAO Z N, HUANG X Q, LIU J, et al.A novel method based on time series ensemble model for hourly photovoltaic power prediction[J]. Energy, 2023, 276: 127542.
[19] 张淑清, 杜灵韵, 王册浩, 等. 基于格拉姆角场与改进CNN-ResNet的风电功率预测方法[J]. 电网技术, 2023, 47(4): 1540-1548.
ZHANG S Q, DU L Y, WANG C H, et al.Wind power forecasting method based on GAF and improved CNN-Res Net[J]. Power system technology, 2023, 47(4): 1540-1548.
[20] FEROZ MIRZA A, MANSOOR M, USMAN M, et al.Hybrid Inception-embedded deep neural network ResNet for short and medium-term PV-Wind forecasting[J]. Energy conversion and management, 2023, 294: 117574.
[21] 瞿逢重, 朱江, 涂星滨, 等. 基于GRU和ResNet的短时水声通信信号调制识别[J]. 信号处理, 2023, 39(10): 1793-1804.
QU F Z, ZHU J, TU X B, et al.Automatic modulation recognition of short-time underwater acoustic communication signal based on GRU and ResNet[J]. Journal of signal processing, 2023, 39(10): 1793-1804.
[22] 刘源延, 孔小兵, 马乐乐, 等. 基于小波包变换与深度学习的超短期光伏功率预测[J]. 太阳能学报, 2024, 45(5): 537-546.
LIU Y Y, KONG X B, MA L L, et al.Ultra-short-term photovoltaic power forecasting based on wavelet packet transform and deep learning[J]. Acta energiae solaris sinica, 2024, 45(5): 537-546.
[23] SUO L M, PENG T, SONG S H, et al.Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm[J]. Energy, 2023, 276: 127526.

基金

中央高校基本科研业务费专项(2021MS089)

PDF(2234 KB)

Accesses

Citation

Detail

段落导航
相关文章

/