夏热冬冷地区低能耗住宅供冷能源灵活性及对可再生能源自给率的影响

艾代峰, 郝小礼, 邓章, 刘仙萍

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 291-300.

PDF(1761 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1761 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 291-300. DOI: 10.19912/j.0254-0096.tynxb.2023-1829

夏热冬冷地区低能耗住宅供冷能源灵活性及对可再生能源自给率的影响

  • 艾代峰1, 郝小礼1,2, 邓章1, 刘仙萍1
作者信息 +

ENERGY FLEXIBILITY FOR COOLING OF LOW-ENERGY HOUSES IN HOT SUMMER AND COLD WINTER REGIONS AND IMPLICATIONS FOR RENEWABLE ENERGY SELF-SUFFICIENCY RATES

  • Ai Daifeng1, Hao Xiaoli1,2, Deng Zhang1, Liu Xianping1
Author information +
文章历史 +

摘要

以夏热冬冷地区的普通住宅公寓和低能耗住宅公寓为例,定义温度向上和向下两种灵活性调节事件,利用DesignBuilder对比分析建筑本体固有的保冷能力,量化建筑在供冷季的能源灵活性潜力。结果表明:在不影响人体热舒适的前提下,低能耗住宅在向下调节中增加的冷量远低于普通住宅,最优时长为12:00—18:00。通过向下调节,低能耗住宅的可再生能源自给率达到79.8%,远超普通住宅的37.2%。经济性分析显示,低能耗住宅在向上和向下调节中均有收益,一天内节省电费分别为129元和105元。

Abstract

Assessing the energy flexibility potential of buildings during the cooling season, by taking an ordinary residential apartment and a low-energy residential apartment in the hot summer and cold winter zone as case studies. Two types of flexible temperature adjustment events are defined, namely, upward and downward adjustment. Then, DesignBuilder is used to compare and analyze the inherent cooling capacity of the building’s thermal mass. The results show that, without affecting human thermal comfort, the additional cooling load in the downward adjustment of the low-energy residential apartment is much lower than that of the ordinary residential apartment, with the optimal period being from 12:00 to 18:00. Through downward adjustment, the self-sufficiency rate of solar energy in the low-energy residential apartment reaches 79.8%, far exceeding that of the ordinary residential apartment at 37.2%. Economic analysis indicates that the low-energy residential apartment yields benefits in upward and downward adjustments, saving electricity costs by 129 yuan and 105 yuan per day.

关键词

能源灵活性 / 低能耗建筑 / 夏热冬冷地区 / 可再生能源 / 蓄冷 / 电网

Key words

energy flexibility / low-energy buildings / hot summer and cold winter region / renewable energy / cold storage / power grid

引用本文

导出引用
艾代峰, 郝小礼, 邓章, 刘仙萍. 夏热冬冷地区低能耗住宅供冷能源灵活性及对可再生能源自给率的影响[J]. 太阳能学报. 2025, 46(3): 291-300 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1829
Ai Daifeng, Hao Xiaoli, Deng Zhang, Liu Xianping. ENERGY FLEXIBILITY FOR COOLING OF LOW-ENERGY HOUSES IN HOT SUMMER AND COLD WINTER REGIONS AND IMPLICATIONS FOR RENEWABLE ENERGY SELF-SUFFICIENCY RATES[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 291-300 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1829
中图分类号: TK02   

参考文献

[1] 中华人民共和国国家发展和改革委员会. 努力推动实现碳达峰碳中和目标[N/OL]. (2021-11-11). https://www.ndrc.gov.cn/wsdwhfz/202111/t20211111_1303691_ext.html.
National Development and Reform Commission of the People's Republic of China. Efforts to promote the achievement of peak carbon and carbon neutrality targets[N/OL]. (2021-11-11). https://www.ndrc.gov.cn/wsdwhfz/202111/t20211111_1303691_ext.html.
[2] LI Y, YANG X D, RAN Q Y, et al.Energy structure, digital economy, and carbon emissions: evidence from China[J]. Environmental science and pollution research international, 2021, 28(45): 64606-64629.
[3] 廖华, 向福洲. 中国“十四五” 能源需求预测与展望[J]. 北京理工大学学报(社会科学版), 2021, 23(2): 1-8.
LIAO H, XIANG F Z.Forecast and prospect of energy demand in China’s“14th Five-Year” plan period[J]. Journal of Beijing Institute of Technology(social sciences edition), 2021, 23(2): 1-8.
[4] 吴亚楠, 周庆伟, 武贺, 等. 中国近海太阳能资源特征分析及储量评估[J]. 太阳能学报, 2023, 44(12): 162-169.
WU Y N, ZHOU Q W, WU H, et al.Characteristics analysis and reserve evaluation of offshore solar energy resources in China[J]. Acta energiae solaris sinica, 2023, 44(12): 162-169.
[5] 邵桂萍, 许洪华. 可再生能源综合系统现状与未来发展趋势研究[J]. 太阳能, 2024(7): 127-132.
SHAO G P, XU H H.Research on present situation and future development trend of renewable energy integrated system[J]. Solar energy, 2024(7): 127-132.
[6] 于海江. 填补屋顶光伏技术标准空白[N]. 中国电力报, 2021-12-30(005).
YU H J. Filling the gap of rooftop PV technical standards[N]. China electricity news, 2021-12-30(005).
[7] LI H, WANG Z, HONG T Z, et al.Energy flexibility of residential buildings: a systematic review of characterization and quantification methods and applications[J]. Advances in applied energy, 2021, 3: 100054.
[8] MA Z, KNOTZER A, BILLANES J D, et al.A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation[J]. Renewable and sustainable energy reviews, 2020, 123: 109750.
[9] CHEN Y B, XU P, GU J F, et al.Measures to improve energy demand flexibility in buildings for demand response (DR): a review[J]. Energy and buildings, 2018, 177: 125-139.
[10] SABERI-DERAKHTENJANI A, ATHIENITIS A K, EICKER U, et al.Energy flexibility comparison of different control strategies for zones with radiant floor systems[J]. Buildings, 2022, 12(6): 837.
[11] MARIJANOVIC Z, THEILE P, CZOCK B H.Value of short-term heating system flexibility:A case study for residential heat pumps on the German intraday market[J]. Energy, 2022, 249: 123664.
[12] MARSZAL-POMIANOWSKA A, HEISELBERG P, KALYANOVA LARSEN O.Household electricity demand profiles:A high-resolution load model to facilitate modelling of energy flexible buildings[J]. Energy, 2016, 103: 487-501.
[13] GOLMOHAMADI H, LARSEN K G, JENSEN P G, et al.Hierarchical flexibility potentials of residential buildings with responsive heat pumps: a case study of Denmark[J]. Journal of building engineering, 2021, 41: 102425.
[14] MASY G, GEORGES E, VERHELST C, et al.Smart grid energy flexible buildings through the use of heat pumps and building thermal mass as energy storage in the Belgian context[J]. Science and technology for the built environment, 2015, 21(6): 800-811.
[15] ARTECONI A, COSTOLA D, HOES P, et al.Analysis of control strategies for thermally activated building systems under demand side management mechanisms[J]. Energy and buildings, 2014, 80: 384-393.
[16] REYNDERS G, NUYTTEN T, SAELENS D.Potential of structural thermal mass for demand-side management in dwellings[J]. Building and environment, 2013, 64: 187-199.
[17] REYNDERS G, DIRIKEN J, SAELENS D.A generic quantification method for the active demand response potential by structural storage in buildings[C]//Building Simulation Conference Proceedings", "Proceedings of Building Simulation 2015: 14th Conference of IBPSA, 2015.
[18] LE DRÉAU J, HEISELBERG P. Energy flexibility of residential buildings using short term heat storage in the thermal mass[J]. Energy, 2016, 111: 991-1002.
[19] D’HULST R, LABEEUW W, BEUSEN B, et al. Demand response flexibility and flexibility potential of residential smart appliances: experiences from large pilot test in Belgium[J]. Applied energy, 2015, 155: 79-90.
[20] 陆耀庆. 实用供热空调设计手册[M]. 2版. 北京: 中国建筑工业出版社, 2008.
LU Y Q.Practical heating and air conditioning design manual[M]. 2nd ed. Beijing: China Architecture & Building Press, 2008.
[21] FOTEINAKI K, LI R L, HELLER A, et al.Heating system energy flexibility of low-energy residential buildings[J]. Energy and buildings, 2018, 180: 95-108.
[22] 中华人民共和国住房和城乡建设部. 中华人民共和国工程建设标准强制性条文[M]. 北京: 中国水利水电出版社, 2013.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Mandatory provisions of Engineering construction standards of the People’s Republic of China[M]. Beijing: China Water Resources and Hydropower Press, 2013.
[23] 湖南省住房和城乡建设厅. 湖南省建筑工程信息模型施工应用指南[M]. 北京: 中国建筑工业出版社, 2017.
Hunan Provincial Department of Housing and Urban-Rural Development. Hunan province construction engineering information modeling construction application guide [M]. Beijing: China Architecture & Building Press, 2017.
[24] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 建筑外门窗气密、水密、抗风压性能分级及检测方法[M]. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Grading and testing methods for airtightness, watertightness and wind pressure resistance of external doors and windows of buildings[M]. Beijing: China Standard Press, 2008.
[25] REYNDERS G, DIRIKEN J, SAELENS D.Generic characterization method for energy flexibility: applied to structural thermal storage in residential buildings[J]. Applied energy, 2017, 198: 192-202.
[26] 李原, 徐国强, 王松, 等. 可再生能源消纳措施的量化评估方法研究[J]. 太阳能学报, 2022, 43(8): 360-365.
LI Y, XU G Q, WANG S, et al.Research on quantitative assessment method of renewable energy accommodation measures[J]. Acta energiae solaris sinica, 2022, 43(8): 360-365.

基金

湖南省自然科学基金面上项目(2022JJ30251); 湖南省教育厅重点项目(19A180)

PDF(1761 KB)

Accesses

Citation

Detail

段落导航
相关文章

/