采用k-ω SST湍流模型,对加装涡流发生器(VG)的S809翼段的深度动态失速过程进行数值模拟,探究三角形、梯形、矩形3种VG对翼段深失速的影响。从翼段升阻力系数、表面压力系数和VG流向涡3个角度对比分析。结果表明:矩形VG对深失速抑制效果最好,最大升力系数为1.812,失速攻角为20.224°,较光滑翼段,升力系数提升11.25%,失速角延迟了1.622°。源于深失速时,矩形VG的流向涡速度最快、涡核尺寸最大、涡量最强,对边界层的影响最大,更有利于抑制流动分离。
Abstract
Using k-ω SST turbulence model is used to numerically simulate the deep dynamic stall process of the S809 wing segment equipped with a vortex generator (VG), and to explore the effects of three types of VGs, triangular, trapezoidal, and rectangular, on the deep stall of the wing segment. Comparative analysis is conducted from three perspectives: lift drag coefficient, surface pressure coefficient, and VG flow vortex of the wing segment. The results show that the rectangular VG has the best effect on deep stall suppression, with a maximum lift coefficient of 1.812 and a stall attack angle of 20.224°. Compared to the smooth wing segment, the lift coefficient is increased by 11.25%, and the stall angle is delayed by 1.622°. When originating from deep stall, the rectangular VG has the fastest flow vortex velocity, the largest vortex core size, and the strongest vorticity, which has the greatest impact on the boundary layer and is more conducive to suppressing flow separation.
关键词
数值模拟 /
流动控制 /
风力机 /
翼型 /
动态失速 /
涡流发生器
Key words
numerical simulation /
flow control /
wind turbines /
wing /
dynamic stall /
vortex generator
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何政洋. 涡流发生器参数对风力机叶片气动特性影响的数值模拟研究[D]. 重庆: 重庆大学,2016.
HE Z Y.Numerical simulation investigation of the effect of vortex generator parameters on aerodynamic characteristics of wind turbine blade[D]. Chongqing: Chongqing University, 2016.
[2] TAYLOR H D.Elimination of diffuser separation by vortex generators[R]. United aircraft corporation report, No R-4012-3, 1947.
[3] NICKERSON J D Jr. A study of vortex generators at low Reynolds numbers[C]//24th Aerospace Sciences Meeting. Reno, NV, 1986: 155.
[4] FORSTER K J, WHITE T R.Numerical investigation into vortex generators on heavily cambered wings[J]. AIAA journal, 2014, 52(5): 1059-1071.
[5] 江瑞芳, 赵振宙, 王同光, 等. 涡流发生器弦向位置对翼型动态失速的影响机理[J]. 太阳能学报, 2022, 43(11): 253-258.
JIANG R F, ZHAO Z Z, WANG T G, et al.Influence of vortex generators chord position on airfoil dynamic stall[J]. Acta energiae solaris sinica, 2022, 43(11): 253-258.
[6] 焦建东. 加装涡流发生器风力机叶片的气动性能研究[D]. 华北电力大学, 2015.
JIAO J D.The aerodynamic properties investigation of wind turbine blade with vortex generators[D]. North China Electric Power University, 2015
[7] 戴丽萍, 许雅苹, 周强, 等. 涡发生器对风力机翼型动态失速的影响[J]. 工程热物理学报, 2018, 39(8): 1706-1712.
DAI L P, XU Y P, ZHOU Q, et al.Effects of vortex generators on wind turbine airfoil in dynamic stall[J]. Journal of engineering thermophysics, 2018, 39(8): 1706-1712.
[8] ZHU C Y, WANG T G, WU J H.Numerical investigation of passive vortex generators on a wind turbine airfoil undergoing pitch oscillations[J]. Energies, 2019, 12(4): 654.
[9] McCROSKEY W J, PUCCI S L. Viscous-inviscid interaction on oscillating airfoils in subsonic flow[J]. AIAA journal, 1982, 20(2): 167-174.
[10] 钱炜祺, 符松, 蔡金狮. 翼型动态失速的数值研究[J]. 空气动力学学报, 2001, 19(4): 427-433.
QIAN W Q, FU S, CAI J S.Numerical study of airfoil dynamic stall[J]. Acta aerodynamica sinica, 2001, 19(4): 427-433.
[11] 黄知龙, 刘沛清, 赵万里. 风力机翼型大迎角分离和动态失速的数值研究[J]. 电网与清洁能源, 2010, 26(5): 47-51.
HUANG Z L, LIU P Q, ZHAO W L.Simulation of separated flows at high angles of attack for wind turbine airfoil and its dynamic stall[J]. Power system and clean energy, 2010, 26(5): 47-51.
基金
国家自然科学基金(52376179; 51876054)