响应可再生能源波动的灵活电炉负荷调控模式

徐峰达, 王铖, 潘远林

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 225-234.

PDF(1949 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1949 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 225-234. DOI: 10.19912/j.0254-0096.tynxb.2023-1901

响应可再生能源波动的灵活电炉负荷调控模式

  • 徐峰达1,2, 王铖1, 潘远林2
作者信息 +

ADAPTIVE ELECTRIC FURNACE LOAD MANAGEMENT STRATEGY ADDRESSING RENEWABLE ENERGY INTERMITTENCY

  • Xu Fengda1,2, Wang Cheng1, Pan Yuanlin2
Author information +
文章历史 +

摘要

鉴于铁合金产品生产流程较短、工艺相对简单,对温度、压强等环境因素精度要求较为宽松,提出一种通过控制电炉生产过程调节功率需求,以响应可再生能源出力波动的联合调控模式。通过构建多阶段用电功率物理模型及日前-日内两阶段调控模式,利用仿真模拟验证联合体的盈利机制和获利空间,发现铁合金负荷企业可依靠低价风电降本增效,同时维持非风电部分功率平稳,避免给电网造成额外压力。

Abstract

Considering the relatively brief and straightforward production processes of ferroalloy commodities and the lenient tolerances for environmental variables such as temperature and pressure, a novel integrated scheduling approach is put forth that leverages control over the submerged arc furnace operations to dynamically adapt the power demand in response to the variable output from renewable energy sources. Via the establishment of a multi-tiered power system physical model and the implementation of a dual-stage day-ahead and intra-day control framework, the profitability mechanism and potential revenue gains of a cooperative alliance premised upon this model are substantiated through rigorous simulation exercises. It has been ascertained that ferroalloy load enterprises can effectively decrease costs and enhance operational efficiency by capitalizing on inexpensive wind power resources, thereby maintaining a stable power load profile, save for the portion directly correlating with wind power variability, thus mitigating additional strain on the power grid infrastructure.

关键词

可再生能源 / 电力负荷调度 / 电弧炉 / 灵活性负荷 / 源荷协同 / 模型预测控制

Key words

renewable energy / electric load dispatching / arc furnace / flexible load / source load cooperation / model predictive control

引用本文

导出引用
徐峰达, 王铖, 潘远林. 响应可再生能源波动的灵活电炉负荷调控模式[J]. 太阳能学报. 2025, 46(3): 225-234 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1901
Xu Fengda, Wang Cheng, Pan Yuanlin. ADAPTIVE ELECTRIC FURNACE LOAD MANAGEMENT STRATEGY ADDRESSING RENEWABLE ENERGY INTERMITTENCY[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 225-234 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1901
中图分类号: TM924.4+2   

参考文献

[1] 国家能源局. 国家能源局发布2024年全国电力工业统计数据[EB/OL].[2025-1-21]. https://www.nea.gov.cn/20250121/097bfd7c1cd3498897639857d86d5dac/c.html.
National Energy Administration. National Energy Administration released statistical data of national electric power industry in2024[EB/OL]. [2025-1-21]. https://www.nea.gov.cn/20250121/097bfd7c1cd3498897639857d86d5dac/c.html.
[2] 曾鸣, 武赓, 王昊婧, 等. 智能用电背景下考虑用户满意度的居民需求侧响应调控策略[J]. 电网技术, 2016, 40(10): 2917-2923.
ZENG M, WU G, WANG H J, et al.Regulation strategies of demand response considering user satisfaction under smart power background[J]. Power system technology, 2016, 40(10): 2917-2923.
[3] 张虹, 申鑫, 穆昊源, 等. 基于Multi-Agent异步深度强化学习的居民住宅能耗在线优化调度研究[J]. 中国电机工程学报, 2020, 40(1): 117-127.
ZHANG H, SHEN X, MU H Y, et al.Research on online optimal dispatching of residential energy consumption based on Multi-Agent asynchronous deep reinforcement learning[J]. Proceedings of the CSEE, 2020, 40(1): 117-127.
[4] 王俊翔, 李华强, 邓靖微, 等. 考虑需求侧灵活性资源的商业园区微网多目标优化调度[J]. 电力建设, 2021, 42(3): 35-44.
WANG J X, LI H Q, DENG J W, et al.Multi-objective optimal scheduling of business park microgrid considering demand-side flexible resources[J]. Electric power construction, 2021, 42(3): 35-44.
[5] 王奕快. 基于能量枢纽规划的商业园区综合需求响应策略分析[D]. 杭州: 浙江大学, 2019.
WANG Y K.Analysis of comprehensive demand response strategy of commercial park based on energy hub planning[D]. Hangzhou: Zhejiang University, 2019.
[6] 冉金周, 李华强, 李彦君, 等. 考虑灵活性供需匹配的孤岛微网优化调度策略[J]. 太阳能学报, 2022, 43(5): 36-44.
RAN J Z, LI H Q, LI Y J, et al.Optimal scheduling of isolated microgrid considering flexible power supply and demand[J]. Acta energiae solaris sinica, 2022, 43(5): 36-44.
[7] 李兴国, 任永峰, 孟庆天, 等. 考虑可控负荷的含CSP和P2G的综合能源系统优化调度[J]. 太阳能学报, 2023, 44(12): 552-559.
LI X G, REN Y F, MENG Q T, et al.Optimal scheduling of integrated energy system with CSP and P2G considering controllable load[J]. Acta energiae solaris sinica, 2023, 44(12): 552-559.
[8] 程元, 饶尧, 丁胜. 工业领域电力需求侧可调节负荷潜力分析[J]. 能源工程, 2023, 43(1): 72-78.
CHENG Y, RAO Y, DING S.Potential analysis of power demand side adjustable load in industrial field[J]. Energy engineering, 2023, 43(1): 72-78.
[9] 姚明涛, 胡兆光, 张宁, 等. 工业负荷提供辅助服务的多智能体响应模拟[J]. 中国电机工程学报, 2014, 34(25): 4219-4226.
YAO M T, HU Z G, ZHANG N, et al.Multi-agent response simulation of industrial loads for ancillary services[J]. Proceedings of the CSEE, 2014, 34(25): 4219-4226.
[10] 赵越, 蔡秋娜, 王龙, 等. 考虑响应误差的工业可调负荷聚合响应策略[J]. 电力系统及其自动化学报, 2024, 36(1): 106-115.
ZHAO Y, CAI Q N, WANG L, et al.Strategy for aggregated industrial flexible loads participating in demand response considering response errors[J]. Proceedings of the CSU-EPSA, 2024, 36(1): 106-115.
[11] 刘天奇, 蒋晓艳, 宋朋骏, 等. 新型电力系统柔性负荷建模研究综述[J]. 西藏科技, 2023(10): 7-11.
LIU T Q, JIANG X Y, SONG P J, et al.Review of flexible load modeling of new power system[J]. Xizang science and technology, 2023(10): 7-11.
[12] 姜婷玉, 李亚平, 鞠平, 等. 柔性负荷控制及模型研究综述[J]. 智慧电力, 2020, 48(10): 1-8.
JIANG T Y, LI Y P, JU P, et al.Overview of modeling method for flexible load and its control[J]. Smart power, 2020, 48(10): 1-8.
[13] 邓杰, 姜飞, 王文烨, 等. 考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J]. 电网技术, 2022, 46(5): 1692-1704.
DENG J, JIANG F, WANG W Y, et al.Low-carbon optimized operation of integrated energy system considering electric-heat flexible load and hydrogen energy refined modeling[J]. Power system technology, 2022, 46(5): 1692-1704.
[14] 张华鲁, 严干贵, 石杰, 等. 蓄热式电采暖柔性负荷特性建模及可调潜力研究[J]. 高电压技术, 2022, 48(6): 2108-2116.
ZHANG H L, YAN G G, SHI J, et al.Research on the characteristics modeling and adjustable potential of regenerative electric heating flexible load[J]. High voltage engineering, 2022, 48(6): 2108-2116.
[15] 张露, 颜宏文, 马瑞. 基于改进DBSCAN-RNN的电力负荷建模及可调特征提取[J]. 智慧电力, 2023, 51(3): 39-45.
ZHANG L, YAN H W, MA R.Power load modeling and adjustable feature extraction based on improved DBSCAN-RNN[J]. Smart power, 2023, 51(3): 39-45.
[16] 蔡新雷, 董锴, 崔艳林, 等. 基于马尔科夫链理论的电动汽车集群充电负荷建模及可调能力评估[J]. 南方电网技术, 2023, 17(9): 29-37.
CAI X L, DONG K, CUI Y L, et al.Charging load modeling and dispatchable capability evaluation of electric vehicle cluster based on Markov chain theory[J]. Southern power system technology, 2023, 17(9): 29-37.
[17] 许传才. 铁合金冶炼理化原理[M]. 西安: 陕西人民教育出版社, 1991.
XU C C.Physicochemical principle of ferroalloy smelting[M]. Xi’an: Shaanxi People’s Education Press, 1991.
[18] DL/T 572—2021, 电力变压器运行规程[S].
DL/T 572—2021, Power transformer operation specification[S].
[19] GB/T 40607—2021, 调度侧风电或光伏功率预测系统技术要求[S].
GB/T 40607—2021, Technical requirements for dispatching side forecasting system of wind or photovoltaic power[S].

基金

电力规划设计总院项目(2023E00021FAG); 中国能源建设集团重点研发项目(CEEC2023-ZDYF-01)

PDF(1949 KB)

Accesses

Citation

Detail

段落导航
相关文章

/