为全面研究海上风电场设备互连时雷电击中海上升压站的综合暂态效应,首先将升压站平台等效为离散化网络π型电路,基于散射参数和传输线理论搭建升压站变压器和海底电缆模型,然后搭建海上风力机与陆地输电杆塔(二者通过海底电缆与海上升压站互连)的一体化波阻抗模型,探讨雷电击中海上风电场各部分引起的过电压分布规律。实验结果表明,雷电击中海上升压站时,产生MV级的响应电压,引起变压器处的峰值电压为雷击点电压的1/10,且其内部峰值电压略高于外壳;当雷电击中海上风力机或陆地输电杆塔,升压站变压器内部均产生kV级的响应电压。
Abstract
In order to comprehensively study the integrated transient effects of lightning striking the offshore booster station when the offshore wind farm equipment is interconnected, the booster station platform is firstly equated to a discrete network π-type circuit, and the booster station transformer and submarine cable models are constructed based on the scattering parameter and transmission line theories, and then an integrated wave impedance model is constructed between the offshore wind turbine and the onshore transmission tower (which are interconnected with the booster station through the submarine cables), and then the distribution law of overvoltage caused by lightning striking each part of offshore wind farm is explored. The experimental results show that when lightning strikes the offshore booster station, it generates MV-level response voltage, causing the peak voltage at the transformer to be 1/10 of the voltage at the lightning strike point, and its internal peak voltage is slightly higher than that of the enclosure; when lightning strikes the offshore wind turbine or the onshore transmission tower, the internal transformer of the booster station generates kV-level response voltage.
关键词
海上风力机 /
雷电 /
海底电缆 /
海上升压站 /
暂态效应
Key words
offshore wind turbines /
lightning /
submarine cables /
offshore booster station /
transient effect
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KRITIKOU C, PASTROMAS S, KOUTRAS K, et al.Investigation of lightning effects in offshore wind units[C]//2022 36th International Conference on Lightning Protection (ICLP). Cape Town, South Africa, 2022: 220-225.
[2] 李德军, 周剑, 钟孝泰, 等. 海上风电场升压站变压器和GIS的设计、应用和展望[J]. 高压电器, 2021, 57(1): 1-11.
LI D J, ZHOU J, ZHONG X T, et al.Design, application and prospect of transformer and GIS in booster substation for offshore wind farm[J]. High voltage apparatus, 2021, 57(1): 1-11.
[3] SUN Q Q, YANG L, ZHENG Z, et al.A comprehensive lightning surge analysis in offshore wind farm[J]. Electric power systems research, 2022, 211: 108259.
[4] 王建楹, 张育超, 武雪林, 等. 300 MW/220 kV海上升压站总体结构布置[J]. 船舶工程, 2020, 42(增刊1): 526-529, 533.
WANG J Y, ZHANG Y C, WU X L, et al.Overall structural layout of 300 MW/220 kV offshore booster station[J]. Ship engineering, 2020, 42(S1): 526-529, 533.
[5] 李凌飞, 孙悦, 黄莹, 等. 考虑恶劣天气影响的海上风电场及柔性直流并网系统可靠性评估[J]. 南方电网技术, 2020, 14(12): 32-42.
LI L F, SUN Y, HUANG Y, et al.Reliability evaluation of offshore wind farm and VSC-HVDC integrated system considering the influence of extreme weather[J]. Southern power system technology, 2020, 14(12): 32-42.
[6] 周青, 艾蒂斯. 海上风电升压站平台布置与舾装设计探究[J]. 武汉大学学报(工学版), 2021, 54(增刊1): 21-25.
ZHOU Q, AI D S.Research on the platform layout and outfitting design of the offshore wind power booster stations[J]. Engineering journal of Wuhan university, 2021, 54(S1): 21-25.
[7] SHULZHENKO E, KRAPP M, ROCK M, et al.Investigation of lightning parameters occurring on offshore wind farms[C]//2017 International Symposium on Lightning Protection (XIV SIPDA). Natal, Brazil, 2017: 169-175.
[8] 陶世祺, 张小青, 王耀武, 等. 风电机组的雷电暂态过电压统计研究[J]. 太阳能学报, 2018, 39(11): 3261-3269.
TAO S Q, ZHANG X Q, WANG Y W, et al.Statistical analysis of lightning transient overvoltage on wind turbines[J]. Acta energiae solaris sinica, 2018, 39(11): 3261-3269.
[9] 周若琪. 配电变压器雷击建模与雷电防护研究[D]. 北京: 华北电力大学, 2018.
ZHOU R Q.Research on lightning strike modeling and lightning protection of distribution transformer[D]. Beijing: North China Electric Power University, 2018.
[10] 刘乐康, 赵涛, 杨磊, 等. 雷击不同基杆塔下配电变压器雷电防护能力分析[J]. 电瓷避雷器, 2021(5): 1-8.
LIU L K, ZHAO T, YANG L, et al.Lightning protection capability of distribution transformer under different base towers struck by lightning[J]. Insulators and surge arresters, 2021(5): 1-8.
[11] 陈玉, 李涵之, 姚凯, 等. 500 kV充油海底电缆过负荷能力分析[J]. 电工电能新技术, 2021, 40(10): 1-9.
CHEN Y, LI H Z, YAO K, et al.Analysis on overload capacity of 500 kV oil-filled submarine cable[J]. Advanced technology of electrical engineering and energy, 2021, 40(10): 1-9.
[12] 徐逸民. 35 kV海底光电复合缆的电磁环境研究[D]. 大连: 大连理工大学, 2018.
XU Y M.Study on electromagnetic environment of 35kV submarine photoelectric composite cable[D]. Dalian: Dalian University of Technology, 2018.
[13] 张萍, 张海旭, 张国峰, 等. 重力式海上风力机雷电暂态响应研究[J]. 太阳能学报, 2023, 44(7): 285-290.
ZHANG P, ZHANG H X, ZHANG G F, et al.Study on lightning transient responses of gravity foundation offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(7): 285-290.
[14] 张萍, 吴显腾, 赵新贺, 等. 基于ATP-EMTP的海上风机雷电暂态分析[J]. 高电压技术, 2020, 46(12): 4266-4273.
ZHANG P, WU X T, ZHAO X H, et al.Lightning transient analysis of offshore wind turbine based on ATP-EMTP[J]. High voltage engineering, 2020, 46(12): 4266-4273.
[15] 周利军, 黄林, 王路伽, 等. 110 kV输电杆塔的多波阻抗建模与雷击暂态响应分析[J]. 电力自动化设备, 2020, 40(10): 158-164.
ZHOU L J, HUANG L, WANG L J, et al.Multi-wave impedance modeling and lightning strike transient response analysis of 110 kV transmission tower[J]. Electric power automation equipment, 2020, 40(10): 158-164.
[16] GB 50057—2010, 建筑物防雷设计规范[S].
GB 50057—2010, Design code for protection of structures against lightning[S].
基金
河北省省级科技计划(21567605H); 基于无线网络全覆盖的海上风电安全生产管理平台建设研究与应用(XT-KJ-2021012)