为降低多孔介质吸热器中心温度,提高吸热效率和安全可靠性,设计加工一种内插石英玻璃管多孔介质吸热器样机。该吸热器利用内插石英玻璃管均匀聚集太阳光热流密度,抽吸传热流体。采用实验测量和数值模拟方法,对内插石英玻璃管多孔介质吸热器的辐射-对流耦合传热性能进行研究。结果表明,内插石英玻璃管多孔介质吸热器能显著增加中心区域入口速度,协同高斯型聚集太阳光热流密度分布。与单层吸热器相比,内插石英玻璃管多孔介质吸热器峰值温度降低200 K,热效率提高约7.6%。
Abstract
A porous volumetric solar receiver inserted with a quartz glass tube was designed and manufactured to decrease the peak solid temperature and achieve improved thermal efficiency and reliability. This improved receiver homogenizes the concentrated solar flux profile and sucks the heat transfer fluid at the center zone with the inserted quartz glass tube. The radiation-convection heat transfer performances of the improved receiver were investigated by applying the experimental test combined with numerical heat transfer. Results show that the inserted quartz glass tube enables homogenizing the concentrated solar flux profile by increasing the absorbing area and the effects of reflection and refraction on the concentrated solar flux. The inlet velocity at the center zone is much higher than the edge area, which matches the Gaussian concentrated solar flux profile. Compared with the single-layer porous receiver, the improved porous receiver achieves 7.6% higher thermal efficiency and 200 K lower peak solid temperature.
关键词
太阳能 /
吸热器 /
热流密度 /
传热性能 /
热效率
Key words
solar energy /
solar absorber /
heat flux /
heat transfer /
thermal efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] AVILA-MARIN A L, FERNANDEZ-RECHE J, MARTINEZ-TARIFA A. Modelling strategies for porous structures as solar receivers in central receiver systems: a review[J]. Renewable and sustainable energy reviews, 2019, 111: 15-33.
[2] HE Y L, DU S, SHEN S.Advances in porous volumetric solar receivers and enhancement of volumetric absorption[J]. Energy reviews, 2023, 2(3): 100035.
[3] 蔡德程, 芮明奇, 关欣, 等. 高温太阳能吸热管在非均匀热流下的温度研究及结构优化[J]. 太阳能学报, 2022, 43(1): 437-442.
CAI D C, RUI M Q, GUAN X, et al.Temperature study and structural optimization of high temperature solar absorbing tube by non-uniform heat flux[J]. Acta energiae solaris sinica, 2022, 43(1): 437-442.
[4] ZHANG Q Q, CHANG Z S, FU M K, et al.Performance analysis of a light uniform device for the solar receiver or reactor[J]. Energy, 2023, 270: 126940.
[5] CHEN X, XIA X L, YAN X W, et al.Heat transfer analysis of a volumetric solar receiver with composite porous structure[J]. Energy conversion and management, 2017, 136: 262-269.
[6] DU S, XIA T, HE Y L, et al.Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution[J]. Applied energy, 2020, 275: 115343.
[7] WU Z Y, WANG Z F.Fully coupled transient modeling of ceramic foam volumetric solar air receiver[J]. Solar energy, 2013, 89: 122-133.
[8] WU Z Y, CALIOT C, FLAMANT G, et al.Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers[J]. Solar energy, 2011, 85(9): 2374-2385.
[9] 戴贵龙, 薛鑫杰, 陈雪淇, 等. 双层吸热芯聚集太阳光吸收分布特性研究[J]. 太阳能学报, 2021, 42(4): 328-333.
DAI G L, XUE X J, CHEN X Q, et al.Absorption distribution performances of double layer absorber for concentrated solar light[J]. Acta energiae solaris sinica, 2021, 42(4): 328-333.
[10] CUNSOLO S, COQUARD R, BAILLIS D, et al.Radiative properties of irregular open cell solid foams[J]. International journal of thermal sciences, 2017, 117: 77-89.
[11] XIA X L, CHEN X, SUN C, et al.Experiment on the convective heat transfer from airflow to skeleton in open-cell porous foams[J]. International journal of heat and mass transfer, 2017, 106: 83-90.
基金
国家自然科学基金(52176181); 福建省自然科学基金(2021J011055)