一种适用于电动汽车无线充电的恒压恒流混合补偿拓扑

周晓燕, 王鹤霖, 贾海涛, 卢庆轩, 张民, 张海龙

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 343-351.

PDF(4625 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4625 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 343-351. DOI: 10.19912/j.0254-0096.tynxb.2023-1932

一种适用于电动汽车无线充电的恒压恒流混合补偿拓扑

  • 周晓燕, 王鹤霖, 贾海涛, 卢庆轩, 张民, 张海龙
作者信息 +

A HYBRID COMPENSATION TOPOLOGY WITH CONSTANT VOLTAGE AND CONSTANT CURRENT FOR EV BIDIRECTIONAL WIRELESS CHARGING

  • Zhou Xiaoyan, Wang Helin, Jia Haitao, Lu Qingxuan, Zhang Min, Zhang Hailong
Author information +
文章历史 +

摘要

提出一种由光伏供能的无线电力传输系统,其主要应用于电动汽车(EV)的恒流(CC)和恒压(CV)充电拓扑结构,只需调整继电器的开关状态,即可实现电感电容器-电感电容器(LCC-LCC)的CC输出和电感电容串联(LCC-S)的CV输出。与其他拓扑相比,无需冗余元件,且在工作过程中开关频率固定,具有较高的误差容限。所提出的拓扑结构还能实现双向CC和CV充电,而无需在一次侧和二次侧之间进行通信。为验证拓扑结构的有效性,在实验室中搭建6 kW样机,其最大有效率为94%。

Abstract

A wireless power transmission system powered by photovoltaics is proposed, which is mainly applied to the constant current (CC) and constant voltage (CV) charging topologies for electric vehicles (EVs), and only needs to adjust the switching state of the relay to realize the CC output of inductive capacitor-inductive capacitor (LCC-LCC) and the CV output of inductive capacitor in series (LCC-S). Compared with other topologies, no redundant components are required and the switching frequency is fixed during operation with high error tolerance. The proposed topology also enables bidirectional CC and CV charging without the need for communication between the primary and secondary sides. To verify the effectiveness of the topology, a 6 kW prototype is built in the laboratory with a maximum efficiency of 94%.

关键词

光伏发电 / 电动汽车 / 恒流充电 / 恒压充电 / 混合补偿拓扑

Key words

PV power generation / EVs / constant current charging / constant voltage charging / hybrid compensation topology

引用本文

导出引用
周晓燕, 王鹤霖, 贾海涛, 卢庆轩, 张民, 张海龙. 一种适用于电动汽车无线充电的恒压恒流混合补偿拓扑[J]. 太阳能学报. 2024, 45(11): 343-351 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1932
Zhou Xiaoyan, Wang Helin, Jia Haitao, Lu Qingxuan, Zhang Min, Zhang Hailong. A HYBRID COMPENSATION TOPOLOGY WITH CONSTANT VOLTAGE AND CONSTANT CURRENT FOR EV BIDIRECTIONAL WIRELESS CHARGING[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 343-351 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1932
中图分类号: TM46   

参考文献

[1] 杨丽君, 杨博, 安立明, 等. 考虑电动汽车响应的光储微电网储能优化配置[J]. 太阳能学报, 2020, 41(4): 340-347.
YANG L J, YANG B, AN L M, et al.Optimal configuration of grid-connected pv-and-storage microgrid considering evs' demand response[J]. Acta energiae solaris sinica, 2020, 41(4): 340-347.
[2] 李轩, 张家安, 吴林林, 等. 可再生能源汇集地区风电与光伏发电的综合容量可信度评估[J]. 太阳能学报, 2017, 38(3): 707-714.
LI X, ZHANG J A, WU L L, et al.Comprehensive capacity credit evaluation of wind and photovoltaic power in dense renewable energy areas[J]. Acta energiae solaris sinica, 2017, 38(3): 707-714.
[3] 杨云虎, 邓泽卓, 张杨, 等. 一种新颖LCCC/S补偿的恒输出无线电能传输系统[J]. 电力电子技术, 2022, 56(5): 126-129.
YANG Y H, DENG Z Z, ZHANG Y, et al.A novel LCCC/S compensated wireless power transfer system with constant output[J]. Power electronics, 2022, 56(5): 126-129.
[4] 熊振阳, 蔡榕, 徐国宁, 等. 激光无线输能系统光伏特性及最大功率跟踪研究[J]. 太阳能学报, 2022, 43(9): 21-29.
XIONG Z Y, CAI R, XU G N, et al.Research on photovoltaic characteristic and MPPT of laser energy transmission system[J]. Acta energiae solaris sinica, 2022, 43(9): 21-29.
[5] 李叶. 一种优化单电感双输出升降压型直流-直流转换器轻载性能的设计策略[D]. 上海: 复旦大学, 2011.
LI Y.A design strategy to optimize the light load performance of a single inductor dual output boost DC-DC converter[D]. Shanghai: Fudan University, 2011.
[6] YANG L, LI X M, LIU S, et al.Analysis and design of an LCCC/S-compensated WPT system with constant output characteristics for battery charging applications[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(1): 1169-1180.
[7] HUANG Z C, WONG S C, TSE C K.An inductive-power-transfer converter with high efficiency throughout battery-charging process[J]. IEEE transactions on power electronics, 2019, 34(10): 10245-10255.
[8] ZHANG W, WONG S C, TSE C K, et al.Load-independent current output of inductive power transfer converters with optimized efficiency[C]//2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA). Hiroshima, Japan, 2014: 26-28.
[9] QU X H, WONG S C, TSE C K, et al.Design consideration of a current-source-output inductive power transfer LED lighting system[C]//2014 IEEE Energy Conversion Congress and Exposition (ECCE). Pittsburgh, PA, USA, 2014: 6329-6337.
[10] MAI R K, CHEN Y, LI Y, et al.Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter[J]. IEEE transactions on power electronics, 2017, 32(8): 5897-5906.
[11] ZHANG W, WONG S C, TSE C K, et al.Analysis and comparison of secondary series- and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio[J]. IEEE transactions on power electronics, 2014, 29(6): 2979-2990.
[12] VU V B, TRAN D H, CHOI W.Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double-sided LCC compensation topology for electric vehicle battery charge applications[J]. IEEE transactions on power electronics, 2018, 33(9): 7398-7410.
[13] ZHANG W, MI C C.Compensation topologies of high-power wireless power transfer systems[J]. IEEE transactions on vehicular technology, 2016, 65(6): 4768-4778.
[14] ZHANG W, WONG S C, TSE C K, et al.Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems[J]. IEEE transactions on power electronics, 2014, 29(1): 191-200.
[15] HOU J, CHEN Q H, WONG S C, et al.Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer[J]. IEEE journal of emerging and selected topics in power electronics, 2015, 3(1): 124-136.
[16] TRITSCHLER J, REICHERT S, GOELDI B.A practical investigation of a high power, bidirectional charging system for electric vehicles[C]//2014 16th European Conference on Power Electronics and Applications. Lappeenranta, Finland, 2014: 1-7.
[17] JOUN G B, CHO B H.An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer[J]. IEEE transactions on power electronics, 1998, 13(6): 1013-1022.
[18] SI P, HU A P, MALPAS S, et al.A frequency control method for regulating wireless power to implantable devices[J]. IEEE transactions on biomedical circuits and systems, 2008, 2(1): 22-29.
[19] MILLER J M, ONAR O C, CHINTHAVALI M.Primary-side power flow control of wireless power transfer for electric vehicle charging[J]. IEEE journal of emerging and selected topics in power electronics, 2015, 3(1): 147-162.
[20] LI Z J, ZHU C B, JIANG J H, et al.A 3-kW wireless power transfer system for sightseeing car supercapacitor charge[J]. IEEE transactions on power electronics, 2017, 32(5): 3301-3316.
[21] LI Y, XU Q D, LIN T R, et al.Analysis and design of load-independent output current or output voltage of a three-coil wireless power transfer system[J]. IEEE transactions on transportation electrification, 2018, 4(2): 364-375.
[22] LIU S, LI X M, YANG L.Three-coil structure-based WPT system design for electric bike CC and CV charging without communication[J]. IET electric power applications, 2019, 13(9): 1318-1327.
[23] FU M F, MA C B, ZHU X N.A cascaded boost-buck converter for high-efficiency wireless power transfer systems[J]. IEEE transactions on industrial informatics, 2014, 10(3): 1972-1980.
[24] LEE A T L, JIN W J, TAN S C, et al. Buck-boost single-inductor multiple-output high-frequency inverters for medium-power wireless power transfer[J]. IEEE transactions on power electronics, 2019, 34(4): 3457-3473.
[25] JOU H L, WU J C, WU K D, et al.Bidirectional DC-DC wireless power transfer based on LCC-C resonant compensation[J]. IEEE transactions on power electronics, 2021, 36(2): 2310-2319.
[26] ZHONG W X, RON HUI S Y. Charging time control of wireless power transfer systems without using mutual coupling information and wireless communication system[J]. IEEE transactions on industrial electronics, 2017, 64(1): 228-235.
[27] SONG K, LI Z J, JIANG J H, et al.Constant current/voltage charging operation for series-series and series-parallel compensated wireless power transfer systems employing primary-side controller[J]. IEEE transactions on power electronics, 2017: 1.
[28] LI X, TSUI C Y, KI W H.A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices[J]. IEEE journal of solid-state circuits, 2015, 50(4): 978-989.
[29] THRIMAWITHANA D J, MADAWALA U K, NEATH M.A synchronization technique for bidirectional IPT systems[J]. IEEE transactions on industrial electronics, 2013, 60(1): 301-309.
[30] TANG Y Y, CHEN Y, MADAWALA U K, et al.A new controller for bidirectional wireless power transfer systems[J]. IEEE transactions on power electronics, 2018, 33(10): 9076-9087.
[31] 蔡慧, 陈俐宏, 魏缪宇, 等. 一种用于光伏发电系统特性测试的能馈型电子负载[J]. 太阳能学报, 2021, 42(10): 61-67.
CAI H, CHEN L H, WEI M Y, et al.Design of energy feedback electronic load for photovoltaic system characteristic testing[J]. Acta energiae solaris sinica, 2021, 42(10): 61-67.
[32] 严干贵, 张善峰, 贾祺, 等. 光伏发电主动参与电网频率调节的机理分析[J]. 太阳能学报, 2021, 42(8): 191-199.
YAN G G, ZHANG S F, JIA Q, et al.Mechanism analysis of PV generation actively participating in power grid frequency regulation[J]. Acta energiae solaris sinica, 2021, 42(8): 191-199.

基金

山东省自然科学基金面上项目(ZR2022ME214)

PDF(4625 KB)

Accesses

Citation

Detail

段落导航
相关文章

/