基于混合电解槽自适应控制的光伏制绿氢系统研究

王舜彦, 任永峰, 张小龙, 薛宇, 刘鹏, 温国伟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 20-28.

PDF(5013 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5013 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 20-28. DOI: 10.19912/j.0254-0096.tynxb.2023-1936
“新型电力系统中光储规划配置及优化运行技术”专题

基于混合电解槽自适应控制的光伏制绿氢系统研究

  • 王舜彦1, 任永峰1, 张小龙2, 薛宇3, 刘鹏2, 温国伟4
作者信息 +

STUDY ON PHOTOVOLTAIC GREEN HYDROGEN PRODUCTION SYSTEM BASED ON ADAPTIVE CONTROL OF HYBRID ELECTROLYZER

  • Wang Shunyan1, Ren Yongfeng1, Zhang Xiaolong2, Xue Yu3, Liu Peng2, Wen Guowei4
Author information +
文章历史 +

摘要

构建光伏阵列与混合电解槽耦合于交流母线的制氢系统。为提高光伏发电系统在环境变化下的能效,采用基于自适应步长扰动观测式的最大功率点追踪技术,光伏直流侧利用超级电容的快速响应和电荷平滑的特性稳定母线电压,网侧变流器采用虚拟同步机控制策略,实现快速响应电网变化需求,提供电网惯性和频率支撑,增强系统稳定性和可靠性;并针对传统单一电解槽制氢系统在固定工作模式下面临的能源浪费、适应性不足等问题,结合碱性电解槽和质子交换膜电解槽的优势,引入一种电解槽自适应控制系统,根据光伏输出功率和电解槽的状态实时调整工作模式,使系统在不同场景下保持较高的灵活性和稳定性。最后通过仿真验证所搭建模型与控制策略的正确性与有效性。

Abstract

In addressing the issues of renewable energy curtailment and reducing carbon emissions in China, solar hydrogen production has become one of the effective solutions. The paper constructs a hydrogen production system by coupling a photovoltaic array with a mixed electrolyzer connected to AC bus. To enhance the energy efficiency of the photovoltaic power generation system under environmental changes, it employs maximum power point tracking technology based on adaptive step perturb and observe. The DC side of the photovoltaic system utilizes the rapid response and charge-smoothing characteristics of supercapacitors to stabilize the bus voltage. On the grid side, the inverter adopts a virtual synchronous machine control strategy to achieve a rapid response to changes in grid demand, providing grid inertia and frequency support to enhance system stability and reliability. In addressing the issues of energy waste and insufficient adaptability faced by traditional single electrolyzer hydrogen production systems in a fixed operating mode, an electrolyzer adaptive control system is introduced. Combining the advantages of alkaline electrolyzer and proton exchange membrane electrolyzer, this system adjusts the operating mode in real-time based on photovoltaic output power and electrolyzer status, ensuring the system maintains high flexibility and stability in different scenarios. Finally, the correctness and effectiveness of the constructed model and control strategy were verified through simulation.

关键词

光伏 / 制氢 / 最大功率点追踪技术 / 自适应控制系统 / 虚拟同步机 / 混合电解槽

Key words

PV / hydrogen production / maximum power point tracking technology / adaptive control systems / virtual synchronous generator / mixed electrolytic cell

引用本文

导出引用
王舜彦, 任永峰, 张小龙, 薛宇, 刘鹏, 温国伟. 基于混合电解槽自适应控制的光伏制绿氢系统研究[J]. 太阳能学报. 2024, 45(7): 20-28 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1936
Wang Shunyan, Ren Yongfeng, Zhang Xiaolong, Xue Yu, Liu Peng, Wen Guowei. STUDY ON PHOTOVOLTAIC GREEN HYDROGEN PRODUCTION SYSTEM BASED ON ADAPTIVE CONTROL OF HYBRID ELECTROLYZER[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 20-28 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1936
中图分类号: TM615   

参考文献

[1] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51.
HUANG Y H, DING T, LI Y T, et al.Summary of energy low-carbon technology under the background of carbon neutrality and its enlightenment to the development of new power system[J]. Proceedings of the CSEE, 2021, 41(S1): 28-51.
[2] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[3] 郜捷, 宋洁, 王剑晓, 等. 支撑中国能源安全的电氢耦合系统形态与关键技术[J]. 电力系统自动化, 2023, 47(19): 1-15.
GAO J, SONG J, WANG J X, et al.Form and key technologies of integrated electricity-hydrogen system supporting energy security in China[J]. Automation of electric power systems, 2023, 47(19): 1-15.
[4] 潘光胜, 顾伟, 张会岩, 等. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化, 2020, 44(23): 1-10.
PAN G S, GU W, ZHANG H Y, et al.Electricity and hydrogen energy system towards accomodation of high proportion of renewable energy[J]. Automation of electric power systems, 2020, 44(23): 1-10.
[5] 郑军铭, 冯丽, 蔡志远, 等. 提高短时中断故障期间新能源微电网稳定性的惯性储能永磁发电机组[J]. 电工技术学报, 2022, 37(23): 6000-6010.
ZHENG J M, FENG L, CAI Z Y, et al.The inertia motivity permanent magnet machine set for improving the stability of new energy microgrid during short-term interruption[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6000-6010.
[6] 曹炜, 钦焕乘, 陆建忠, 等. 新型电力系统下虚拟同步机的定位和应用前景展望[J]. 电力系统自动化, 2023, 47(4): 190-207.
CAO W, QIN H C, LU J Z, et al.Orientation and application prospect of virtual synchronous generator in new power system[J]. Automation of electric power systems, 2023, 47(4): 190-207.
[7] 于彦雪, 关万琳, 陈晓光, 等. 基于序阻抗的虚拟同步机同步频率谐振现象[J]. 电工技术学报, 2022, 37(10): 2584-2595.
YU Y X, GUAN W L, CHEN X G, et al.Synchronous frequency resonance in virtual synchronous generator based on sequence-impedance[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2584-2595.
[8] 苏昕, 徐立军, 胡兵. 考虑多变量因素影响的光伏PEM制氢系统建模与分析[J]. 太阳能学报, 2022, 43(6): 521-529.
SU X, XU L J, HU B.Modelling and analysis of photovoltaic PEM hydrogen production system considering multivariable factors[J]. Acta energiae solaris sinica, 2022, 43(6): 521-529.
[9] 李建林, 赵文鼎, 梁忠豪, 等. 光储一体化耦合制氢系统控制策略及仿真分析[J]. 热力发电, 2022, 51(11): 148-155.
LI J L, ZHAO W D, LIANG Z H, et al.Control strategy and simulation analysis of coupled optical storage systems for hydrogen production[J]. Thermal power generation, 2022, 51(11): 148-155.
[10] 李军舟, 赵晋斌, 曾志伟, 等. 具有动态调节特性的光伏制氢双阵列直接耦合系统优化策略[J]. 电网技术, 2022, 46(5): 1712-1721.
LI J Z, ZHAO J B, ZENG Z W, et al.Optimization strategy of photovoltaic hydrogen production dual array direct coupling system with dynamic regulation characteristics[J]. Power system technology, 2022, 46(5): 1712-1721.
[11] LIN Y F, FU L J.A study for a hybrid wind-solar-battery system for hydrogen production in an islanded MVDC network[J]. IEEE access, 2022, 10: 85355-85367.
[12] 潘子迅, 杨晓峰, 赵锐, 等. 不平衡电网下虚拟同步机的多模式协调策略[J]. 电工技术学报, 2023, 38(16): 4274-4285.
PAN Z X, YANG X F, ZHAO R, et al.Multi-mode coordination strategy of virtual synchronous generator under unbalanced grid[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4274-4285.
[13] 管敏渊. 虚拟同步机运行状态下并网储能系统自动能量控制[J]. 电力系统自动化, 2022, 46(23): 144-150.
GUAN M Y.Automatic energy control of grid-connected energy storage system under virtual synchronous generator operation[J]. Automation of electric power systems, 2022, 46(23): 144-150.
[14] 张冠锋, 杨俊友, 王海鑫, 等. 基于虚拟同步机技术的风储系统协调调频控制策略[J]. 电工技术学报, 2022, 37(S1): 83-92.
ZHANG G F, YANG J Y, WANG H X, et al.Coordinated frequency modulation control strategy of wind storage system based on virtual synchronous machine technology[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 83-92.
[15] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350.
CHEN M P, REN J X, LI F Q.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta energiae solaris sinica, 2023, 44(3): 344-350.
[16] 江岳文, 杨国铭, 陈宇辛, 等. 考虑电解槽动态制氢效率的氢网运行优化[J]. 中国电机工程学报, 2023, 43(8): 3014-3027.
JIANG Y W, YANG G M, CHEN Y X, et al.Optimal operation for the hydrogen network under consideration of the dynamic hydrogen production efficiency of electrolyzers[J]. Proceedings of the CSEE, 2023, 43(8): 3014-3027.
[17] 李军舟, 赵晋斌, 陈逸文, 等. 考虑动态功率区间和制氢效率的电转氢(P2H)设备容量配置优化[J]. 电工技术学报, 2023, 38(18): 4864-4874, 4920.
LI J Z, ZHAO J B, CHEN Y W, et al.Optimal capacity configuration of P2H equipment considering dynamic power range and hydrogen production efficiency[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4864-4874, 4920.

基金

国家自然科学基金(52367022; 51967016); 内蒙古自治区重点研发和成果转化项目(2023YFHH0077); 内蒙古自治区科技创新重大示范工程“揭榜挂帅”项目(2023JBGS0013)

PDF(5013 KB)

Accesses

Citation

Detail

段落导航
相关文章

/