基于BNN-RA模型的风电机组轴承故障诊断研究

余萍, 宋紫琼, 曹洁, 陈息良

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 643-651.

PDF(2317 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2317 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 643-651. DOI: 10.19912/j.0254-0096.tynxb.2023-1941

基于BNN-RA模型的风电机组轴承故障诊断研究

  • 余萍1~3, 宋紫琼1, 曹洁1, 陈息良1
作者信息 +

RESEARCH ON FAULT DIAGNOSIS OF WIND TURBINE BEARING BASED ON BNN-RA MODEL

  • Yu Ping1~3, Song Ziqiong1, Cao Jie1, Chen Xiliang1
Author information +
文章历史 +

摘要

针对风电机组轴承故障诊断中特征提取困难,模型迭代速度慢,精度低的问题,该文提出一种基于改进二值化神经网络(BNN)的风电机组轴承故障诊断方法。首先采用格拉姆角场(GAF)将轴承振动信号转换为二维图像,以提高特征提取精度,然后结合深度残差网络和注意力机制构建BNN-RA(BNN+ Residual Network + Spatial attention network structure)故障诊断模型,实现轴承的高效故障诊断,最终通过美国凯斯西储大学(CWRU)与江南大学(JNU)公开的轴承数据集进行方法有效性验证。结果表明,该方法可有效提高网络迭代速度和诊断精度,模型在CWRU轴承数据集单一工况下迭代11次可达到收敛,故障诊断准确率达到99.20%,在两数据集的不同工况下平均准确率可达98.46%与97.6%。

Abstract

To address the challenges of feature extraction, slow model iteration, and low accuracy in diagnosing faults in wind turbine bearings, this paper introduces a diagnostic approach based on an enhanced version of the Binarized Neural Network (BNN) methodology. Firstly, the Gramian Angular Field (GAF) is utilized to transform the bearing vibration signal into a two-dimensional image, improving the accuracy of feature extraction. Next, the BNN-RA model (BNN + Residual Network + Spatial Attention Network) is constructed by integrating a deep residual network with an attention mechanism, enabling efficient fault diagnosis for bearings. The results demonstrate that the proposed method significantly enhances both network iteration speed and diagnostic accuracy. Specifically, the model achieves convergence after only 11 iterations under a single working condition of the CWRU bearing dataset, with fault diagnosis accuracy reaching 99.20%. Furthermore, the average accuracy across the two datasets are 98.46% and 97.60% under different operating conditions, respectively.

关键词

风电机组 / 故障诊断 / 轴承 / 二值化神经网络 / 格拉姆角场

Key words

wind turbines / fault diagnosis / bearing / binarized neural networks / Gramian angular field

引用本文

导出引用
余萍, 宋紫琼, 曹洁, 陈息良. 基于BNN-RA模型的风电机组轴承故障诊断研究[J]. 太阳能学报. 2025, 46(3): 643-651 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1941
Yu Ping, Song Ziqiong, Cao Jie, Chen Xiliang. RESEARCH ON FAULT DIAGNOSIS OF WIND TURBINE BEARING BASED ON BNN-RA MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 643-651 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1941
中图分类号: TH133.3   

参考文献

[1] 张振海, 王维庆, 王海云, 等. 基于HCS-GWO-MSVM的风电机组齿轮箱复合故障诊断研究[J]. 太阳能学报, 2021, 42(10): 176-182.
ZHANG Z H, WANG W Q, WANG H Y, et al.Research on compound fault diagnosis of wind turbine gearbox based on HCS-GWO-MSVM[J]. Acta energiae solaris sinica, 2021, 42(10): 176-182.
[2] 齐咏生, 刘飞, 李永亭, 等. 基于MK-MOMEDA和Teager能量算子的风电机组滚动轴承复合故障诊断[J]. 太阳能学报, 2021, 42(7): 297-307.
QI Y S, LIU F, LI Y T, et al.Compound fault diagnosis of wind turbine rolling bearing based on MK-MOMEDA and teager energy operator[J]. Acta energiae solaris sinica, 2021, 42(7): 297-307.
[3] LIU Z P, ZHANG L.A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings[J]. Measurement, 2020, 149: 107002.
[4] 武昆, 徐元博, 杨娜. 时变滤波经验模态分解与对称差分解析能量算子在轴承故障诊断中的应用[J]. 噪声与振动控制, 2020, 40(5): 101-107.
WU K, XU Y B, YANG N.Application of time-varying filtering empirical mode decomposition and symmetrical difference analytic energy operator in fault diagnosis of bearings[J]. Noise and vibration control, 2020, 40(5): 101-107.
[5] LIU C, CHENG G, LIU B, et al.Bearing fault diagnosis method with unknown variable speed based on multi-curve extraction and selection[J]. Measurement, 2020, 153: 107437.
[6] LI C Z, ZHENG J D, PAN H Y, et al.Refined composite multivariate multiscale dispersion entropy and its application to fault diagnosis of rolling bearing[J]. IEEE access, 2019, 7: 47663-47673.
[7] XU Q F, LU S X, JIA W Y, et al.Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning[J]. Journal of intelligent manufacturing, 2020, 31(6): 1467-1481.
[8] ZHANG Y C, YU K, LEI Z H, et al.Integrated intelligent fault diagnosis approach of offshore wind turbine bearing based on information stream fusion and semi-supervised learning[J]. Expert systems with applications, 2023, 232: 120854.
[9] LI Z, WANG Y, MA J N.Fault diagnosis of motor bearings based on a convolutional long short-term memory network of Bayesian optimization[J]. IEEE access, 2021, 9: 97546-97556.
[10] LEI Y G, YANG B, JIANG X W, et al.Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical systems and signal processing, 2020, 138: 106587.
[11] TUERXUN W, XU C, GUO H Y, et al.Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm[J]. IEEE access, 2021, 9: 69307-69315.
[12] MUSHTAQ S, MANJURUL ISLAM M M, SOHAIB M. Deep learning aided data-driven fault diagnosis of rotatory machine: a comprehensive review[J]. Energies, 2021, 14(16): 5150.
[13] CHEN X H, ZHANG B K, GAO D.Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]. Journal of intelligent manufacturing, 2021, 32(4): 971-987.
[14] WANG J J, LIANG Y Y, ZHENG Y H, et al.An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples[J]. Renewable energy, 2020, 145: 642-650.
[15] ZHANG L, ZHANG H, CAI G W.The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 3514212.
[16] 苏元浩, 孟良, 许同乐, 等. 不平衡数据集下优化WGAN的风电机组齿轮箱故障诊断方法[J]. 太阳能学报, 2022, 43(11): 148-155.
SU Y H, MENG L, XU T L, et al.Wind turbine gearbox fault diagnosis method for optimized WGAN with unbalanced data sets[J]. Acta energiae solaris sinica, 2022, 43(11): 148-155.
[17] MENG L, SU Y H, KONG X J, et al.A probabilistic Bayesian parallel deep learning framework for wind turbine bearing fault diagnosis[J]. Sensors, 2022, 22(19): 7644.
[18] FU Z X, ZHOU Z H, YUAN Y.Fault diagnosis of wind turbine main bearing in the condition of noise based on generative adversarial network[J]. Processes, 2022, 10(10): 2006.
[19] 陈起磊, 蒋亦悦, 唐瑶, 等. 基于时频图与改进图卷积神经网络的异步电机故障诊断方法[J]. 振动与冲击, 2022, 41(24): 241-248.
CHEN Q L, JIANG Y Y, TANG Y, et al.An induction motor fault diagnosis method based on the time-frequency image method and an improved graph convolutional network[J]. Journal of vibration and shock, 2022, 41(24): 241-248.
[20] ZHANG X L, HAN P, XU L, et al.Research on bearing fault diagnosis of wind turbine gearbox based on 1DCNN-PSO-SVM[J]. IEEE access, 2020, 8: 192248-192258.
[21] 郭占广, 尹帅, 谢敬玲, 等. 基于胶囊神经网络的轴承故障诊断方法研究[J]. 自动化与仪表, 2022, 37(12): 49-53.
GUO Z G, YIN S, XIE J L, et al.Research on bearing fault diagnosis method based on capsule neural network[J]. Automation & instrumentation, 2022, 37(12): 49-53.
[22] 熊剑, 邓松, 时大方. 基于改进残差网络的滚动轴承故障诊断[J]. 轴承, 2020(11): 50-55.
XIONG J, DENG S, SHI D F.Fault diagnosis for rolling bearings based on improved residual network[J]. Bearing, 2020(11): 50-55.

基金

国家自然科学基金(62241307); 甘肃省科技计划项目(22YF7FA166); 兰州市科技计划项目(2023-RC-26)

PDF(2317 KB)

Accesses

Citation

Detail

段落导航
相关文章

/