为提升超短期风电功率的预测精度,提出一种加入融合柯西变异和反向学习策略的改进鱼鹰优化算法(IOOA),用于优化以长短期记忆网络(LSTM)和变模态分解(VMD)为基础的组合预测模型。首先,采用变模态分解收集的历史风电功率数据, 将非线性较强的原始功率数据分解为较为稳定的子序列。其次,使用改进鱼鹰优化算法对长短期记忆网络的隐藏单元数目、训练周期、初始学习率3个参数进行寻优。最后,使用长短期记忆网络对各子序列预测,将各子序列预测值叠加起来得到最终结果。通过风电场实测数据仿真分析,相比于普通长短期记忆网络模型的预测结果,所提模型的均方根误差下降了62.5%、平均绝对百分比误差和平均绝对误差分别下降了61.1%和55.9%,预测精度也高于其他4种组合预测模型,表明该模型成功提高了超短期风电功率的预测精度。
Abstract
To enhance the accuracy of ultra-short-term wind power, a new optimization algorithm called improved osprey optimization algorithm (IOOA) is proposed. It combines Cauchy mutation and reverse learning strategy to optimize a combination prediction model based on long short-term memory network (LSTM) and variable mode decomposition (VMD). Firstly, the historical wind power data collected through VMD is used to decompose the original power data with strong nonlinearity into relatively stable subsequences. Secondly, the osprey optimization algorithm, combining Cauchy mutation and reverse learning strategies, is used to optimize the number of hidden units, training period, and initial learning rate of the LSTM. Finally, the final prediction result is obtained by using a LSTM to predict each subsequence, and the predicted values of each subsequence were superimposed to obtain the final result.The proposed wind farm prediction model has been analyzed by using measured data. The results were compared with ordinary short-term memory neural network models. The proposed model reduced the RMSE by 62.5%, decreased MAPE by 62.2% and MAE by 55.9%. And the prediction accuracy is also higher than other four combination prediction models, indicating its success in improving the prediction accuracy of short-term wind power.
关键词
长短期记忆网络 /
变模态分解 /
风力发电 /
改进鱼鹰优化算法 /
功率预测 /
优化算法
Key words
long short-term memory network /
variable mode decomposition /
wind power /
improved osprey optimization algorithm /
power prediction /
optimization algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] JIANG Z Y, JIA Q S, GUAN X H.Review of wind power forecasting methods: from multi-spatial and temporal perspective[C]//2017 36th Chinese Control Conference (CCC). Dalian, China, 2017: 8.
[2] 武煜昊, 王永生, 徐昊, 等. 风电输出功率预测技术研究综述[J]. 计算机科学与探索, 2022, 16(12): 2653-2677.
WU Y H, WANG Y S, XU H, et al.Survey of wind power output power forecasting technology[J]. Journal of frontiers of computer science and technology, 2022, 16(12): 2653-2677.
[3] HODGE B M, BRANCUCCI MARTINEZ-ANIDO C, WANG Q, et al. The combined value of wind and solar power forecasting improvements and electricity storage[J]. Applied energy, 2018, 214: 1-15.
[4] HAO Y, TIAN C S.A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting[J]. Applied energy, 2019, 238: 368-383.
[5] 张子华, 李琰, 徐天奇, 等. 基于麻雀算法优化的VMD-CNN-LSTM的短期风电功率研究[J]. 电气传动, 2023, 53(5): 77-83.
ZHANG Z H, LI Y, XU T Q, et al.Research on short-term wind power forecasting based on VMD-CNN-LSTM optimized by sparrow algorithm[J]. Electric drive, 2023, 53(5): 77-83.
[6] DAUT M A M, HASSAN M Y, ABDULLAH H, et al. Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review[J]. Renewable & sustainable energy reviews, 2017, 70(Apr.): 1108-1118.
[7] ANH N, PRASAD M, SRIKANTH N, et al.Wave forecasting using meta-cognitive interval type-2 fuzzy inference system[J]. Procedia computer science, 2018, 144: 33-41.
[8] 张琰妮, 史加荣, 李津, 等. 融合残差与VMD-ELM-LSTM的短期风速预测[J]. 太阳能学报, 2023, 44(9): 340-347.
ZHANG Y N, SHI J R, LI J, et al.Short-term wind speed prediction based on residual and VMD-ELM-LSTM[J]. Acta energiae solaris sinica, 2023, 44(9): 340-347.
[9] 刘相杰, 刘小生, 张龙威. 基于VMD-HPO-BiLSTM的大坝变形预测[J]. 大地测量与地球动力学, 2023, 43(8): 851-855.
LIU X J, LIU X S, ZHANG L W.Dam deformation prediction based on VMD-HPO-BiLSTM[J]. Journal of geodesy and geodynamics, 2023, 43(8): 851-855.
[10] 盛四清, 金航, 刘长荣. 基于VMD-WSGRU的风电场发电功率中短期及短期预测[J]. 电网技术, 2022, 46(3): 897-904.
SHENG S Q, JIN H, LIU C R.Short-term and mid-short-term wind power forecasting based on VMD-WSGRU[J]. Power system technology, 2022, 46(3): 897-904.
[11] 薛阳, 燕宇铖, 贾巍, 等. 基于改进灰狼算法优化长短期记忆网络的光伏功率预测[J]. 太阳能学报, 2023, 44(7): 207-213.
XUE Y, YAN Y C, JIA W, et al.Photovoltaic power prediction model based on IGWO-LSTM[J]. Acta energiae solaris sinica, 2023, 44(7): 207-213.
[12] 朱润泽, 王德军. 基于LSTM神经网络的光伏系统功率预测[J]. 电力科技与环保, 2023, 39(3): 201-206.
ZHU R Z, WANG D J.Power prediction of photovoltaic system based on LSTM neural network[J]. Electric power technology and environmental protection, 2023, 39(3): 201-206.
[13] 毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6): 1155-1164.
MAO Q H, ZHANG Q.Improved sparrow algorithm combining Cauchy mutation and opposition-based learning[J]. Journal of frontiers of computer science and technology, 2021, 15(6): 1155-1164.
[14] MOHAMMAD D, PAVEL T.Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J]. Frontiers in mechanical engineering, 2023, 8: 1126450.
[15] PENG H W, LIU F R, YANG X F.A hybrid strategy of short term wind power prediction[J]. Renewable energy, 2013, 50: 590-595.
[16] 张怡, 杨宇晴. 基于AM-LSTM的风电场内多点位风电功率预测[J]. 计算机仿真, 2021, 38(10): 145-148, 159.
ZHANG Y, YANG Y Q.Multi-point wind power prediction in wind farms based on AM-LSTM[J]. Computer simulation, 2021, 38(10): 145-148, 159.
[17] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[18] 江星星, 宋秋昱, 杜贵府, 等. 变分模式分解方法研究与应用综述[J]. 仪器仪表学报, 2023, 44(1): 55-73.
JIANG X X, SONG Q Y, DU G F, et al.Review on research and application of variational mode decomposition[J]. Chinese journal of scientific instrument, 2023, 44(1): 55-73.
[19] 谷学静, 陈洪磊, 孙泽贤, 等. 基于VMD-RL-LSTM的短期风功率预测[J]. 计算机仿真, 2023, 40(4): 89-93, 309.
GU X J, CHEN H L, SUN Z X, et al.Short-term wind power prediction based on VMD-RL-LSTM[J]. Computer simulation, 2023, 40(4): 89-93, 309.
[20] 王甜甜, 鲁云蒙, 刘铁忠. 基于VMD-CNN-LSTM模型和迁移学习框架的风暴潮预测研究[J]. 灾害学, 2023, 38(4): 195-202.
WANG T T, LU Y M, LIU T Z.Storm surge prediction based on VMD-CNN-LSTM model and transfer learning framework[J]. Journal of catastrophology, 2023, 38(4): 195-202.
基金
贵州省科技支撑计划(黔科合支撑[2023]一般411; 黔科合支撑[2023]一般412; 黔科合支撑[2024]一般051); 贵州省双碳研究院开放课题(DCRE-2023-13)