涡流发生器及扭带组合强化换热特性研究

李海珠, 陈雪梅, 李强

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 486-493.

PDF(2693 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2693 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 486-493. DOI: 10.19912/j.0254-0096.tynxb.2023-1961

涡流发生器及扭带组合强化换热特性研究

  • 李海珠, 陈雪梅, 李强
作者信息 +

RESEARCH ON ENHANCED HEAT TRANSFER CHARACTERISTICS BY VORTEX GENERATOR AND TWISTED BELT COMBINATION

  • Li Haizhu, Chen Xuemei, Li Qiang
Author information +
文章历史 +

摘要

该文提出太阳能换热器用的多类型涡流发生器组合的新型复合强化换热结构,并通过数值分析方法,研究多类型涡流发生器组合中的尺寸参数、布置参数和布置方式等变量对整体换热效率的影响,在雷诺数为5000~25000范围内获得了最优参数。研究结果表明:当涡流发生器采用偏心交错布置时,综合换热效率随攻角的增大与布置间距的减小而增大。在新型复合强化换热结构的攻角为75°、扭带的扭率为4、布置间距为1.5D、布置方式为偏心交错布置时,其综合传热性能与光滑通道相比可提高98%~136%。

Abstract

In this paper, a novel composite enhanced heat transfer structure is proposed for solar heat exchangers, incorporating multi-type vortex generators. Numerical analysis is conducted to examine the influence of size parameters, layout parameters, and layout methods on overall heat transfer efficiency within the Reynolds number range of 5000-25000. The results reveal that adopting an eccentric staggered arrangement for the vortex generator enhances heat transfer efficiency by increasing the angle of attack and reducing spacing. By utilizing a new composite enhanced heat transfer structure with an angle of attack set at 75°, torsion rate at 4 for the torsion belt, layout spacing set at 1.5D, and employing an eccentric staggered layout mode, comprehensive heat transfer performance can be improved by 98%-136% compared to that achieved in a smooth channel.

关键词

太阳能设备 / 涡流 / 二次流 / 场协同 / 数值方法

Key words

solar equipment / vortex flow / secondary flow / field synergy / numerical method

引用本文

导出引用
李海珠, 陈雪梅, 李强. 涡流发生器及扭带组合强化换热特性研究[J]. 太阳能学报. 2025, 46(3): 486-493 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1961
Li Haizhu, Chen Xuemei, Li Qiang. RESEARCH ON ENHANCED HEAT TRANSFER CHARACTERISTICS BY VORTEX GENERATOR AND TWISTED BELT COMBINATION[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 486-493 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1961
中图分类号: TK124   

参考文献

[1] ESMAEILZADEH A, AMANIFARD N, DEYLAMI H M.Comparison of simple and curved trapezoidal longitudinal vortex generators for optimum flow characteristics and heat transfer augmentation in a heat exchanger[J]. Applied thermal engineering, 2017, 125: 1414-1425.
[2] 李海珠, 闵春华, 王坤, 等. 涡流发生器强化暖气片散热特性的数值研究[J]. 工程热物理学报, 2022, 43(1): 158-163.
LI H Z, MIN C H, WANG K, et al.Numerical investigation of enhancement heat dissipation characteristics of the radiator with vortex generators[J]. Journal of engineering thermophysics, 2022, 43(1): 158-163.
[3] 吴淑英, 聂昌达, 叶为标, 等. 圆管内置涡流发生器强化传热数值模拟[J]. 太阳能学报, 2019, 40(3): 756-765.
WU S Y, NIE C D, YE W B, et al.Numerical simulation on heat transfer enhancement of tube with vortex generator[J]. Acta energiae solaris sinica, 2019, 40(3): 756-765.
[4] 徐志明, 赵宇, 贺姗姗, 等. 圆管内三角翼涡流发生器CaCO3污垢特性[J]. 太阳能学报, 2019, 40(12): 3417-3425.
XU Z M, ZHAO Y, HE S S, et al.CaCO3 fouling characteristics of delta wing vortex generator in tube[J]. Acta energiae solaris sinica, 2019, 40(12): 3417-3425.
[5] GARELLI L, RÍOS RODRIGUEZ G, DORELLA J J, et al. Heat transfer enhancement in panel type radiators using delta-wing vortex generators[J]. International journal of thermal sciences, 2019, 137: 64-74.
[6] 王文奇, 王飞龙, 何雅玲, 等. 一种新型树叶形翅片的数值与实验研究[J]. 工程热物理学报, 2018, 39(11): 2469-2475.
WANG W Q, WANG F L, HE Y L, et al.Numerical and experimental study of a novel leaf-type fins[J]. Journal of engineering thermophysics, 2018, 39(11): 2469-2475.
[7] TANG L H, CHU W X, AHMED N, et al.A new configuration of winglet longitudinal vortex generator to enhance heat transfer in a rectangular channel[J]. Applied thermal engineering, 2016, 104: 74-84.
[8] LU G F, ZHAI X Q.Analysis on heat transfer and pressure drop of a microchannel heat sink with dimples and vortex generators[J]. International journal of thermal sciences, 2019, 145: 105986.
[9] LUO C, SONG K W, TAGAWA T, et al.Thermal performance of a zig-zag channel formed by two wavy fins mounted with vortex generators[J]. International journal of thermal sciences, 2020, 153: 106361.
[10] FAGR M H, RISHAK Q A, MUSHATET K S.Performance evaluation of the characteristics of flow and heat transfer in a tube equipped with twisted tapes of new configurations[J]. International journal of thermal sciences, 2020, 153: 106323.
[11] PIRIYARUNGROD N, KUMAR M, THIANPONG C, et al.Intensification of thermo-hydraulic performance in heat exchanger tube inserted with multiple twisted-tapes[J]. Applied thermal engineering, 2018, 136: 516-530.
[12] DALKıLıÇ A S, ULUÇ B, CELLEK M S, et al. Single phase flow heat transfer characteristics of quad-channel twisted tape inserts in tubes[J]. International communications in heat and mass transfer, 2020, 118: 104835.
[13] HAYAT M Z, NANDAN G, TIWARI A K, et al.Numerical study on heat transfer enhancement using twisted tape with trapezoidal ribs in an internal flow[J]. Materials today: proceedings, 2021, 46: 5412-5419.
[14] LI P X, LIU Z C, LIU W, et al.Numerical study on heat transfer enhancement characteristics of tube inserted with centrally hollow narrow twisted tapes[J]. International journal of heat and mass transfer, 2015, 88: 481-491.
[15] BUCAK H, YıLMAZ F. The current state on the thermal performance of twisted tapes: a geometrical categorisation approach[J]. Chemical engineering and processing- process intensification, 2020, 153: 107929.
[16] DAGDEVIR T, OZCEYHAN V.An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts[J]. International journal of thermal sciences, 2021, 159: 106564.
[17] WONGCHAREE K, EIAMSA-ARD S.Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes[J]. International communications in heat and mass transfer, 2011, 38(3): 348-352.
[18] BHUIYA M M K, AZAD A K, CHOWDHURY M S U, et al. Heat transfer augmentation in a circular tube with perforated double counter twisted tape inserts[J]. International communications in heat and mass transfer, 2016, 74: 18-26.
[19] EIAMSA-ARD S, WONGCHAREE K, SRIPATTANAPIPAT S.3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes[J]. International communications in heat and mass transfer, 2009, 36(9): 947-955.
[20] EIAMSA-ARD S, CHANGCHAROEN W, BEIGZADEH R, et al.Influence of Co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification[J]. Chemical engineering and processing-process intensification, 2021, 160: 108304.
[21] ZHANG X Y, LIU Z C, LIU W.Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes[J]. International journal of thermal sciences, 2012, 58: 157-167.
[22] SAMRUAISIN P, KUNLABUD S, KUNNARAK K, et al.Intensification of convective heat transfer and heat exchanger performance by the combined influence of a twisted tube and twisted tape[J]. Case studies in thermal engineering, 2019, 14: 100489.
[23] LIAW K L, KURNIA J C, SASMITO A P.Turbulent convective heat transfer in helical tube with twisted tape insert[J]. International journal of heat and mass transfer, 2021, 169: 120918.
[24] EIAMSA-ARD S, PROMVONGE P.Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts[J]. International journal of heat and mass transfer, 2010, 53(7/8): 1364-1372.
[25] EIAMSA-ARD S, WONGCHAREE K, EIAMSA-ARD P, et al.Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes[J]. Experimental thermal and fluid science, 2010, 34(8): 1151-1161.
[26] 李海珠. 涡流发生器强化自然对流与强制对流传热特性研究[D]. 天津: 河北工业大学, 2021.
LI H Z.Study on heat transfer characteristics enhanced by natural convection and forced convection using a vortex generator[D]. Tianjin: Hebei University of Technology, 2021.

基金

国家自然科学基金(52276071; U2241252)

PDF(2693 KB)

Accesses

Citation

Detail

段落导航
相关文章

/