面向船舶余热回收的TEG-ORC联合循环变底循环比及过热工况输出性能研究

孙德平, 李怡然, 乔广超, 石飞雄, 封星, 柳长昕

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 73-82.

PDF(2272 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2272 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 73-82. DOI: 10.19912/j.0254-0096.tynxb.2023-1967

面向船舶余热回收的TEG-ORC联合循环变底循环比及过热工况输出性能研究

  • 孙德平, 李怡然, 乔广超, 石飞雄, 封星, 柳长昕
作者信息 +

RESEARCH ON DIFFERENT BOTTOM CYCLE RATIOS AND SUPERHEAT CONDITION OUTPUT PERFORMANCE OF TEG-ORC COMBINED CYCLE FOR SHIP WASTE HEAT RECOVERY

  • Sun Deping, Li Yiran, Qiao Guangchao, Shi Feixiong, Feng Xing, Liu Changxin
Author information +
文章历史 +

摘要

选用R245fa作为有机朗肯循环(ORC)底循环工质,比较工质在饱和蒸汽状态与过热蒸汽状态时的联合循环系统性能,并研究特定过热度工况下TEG/ORC底循环比的变化对系统性能的影响。试验结果表明,在TEG-ORC联合循环中,提高工质过热度能提高系统输出功率;在工质过热状态下,增加底循环比能显著增加联合循环系统输出功率的同时降低其发电成本、提高工质流量,有助于提升联合循环系统的性能。

Abstract

This paper selects R245fa as the ORC bottom cycle working fluid and compares the system performance in saturated steam and superheated steam states. The paper also studies the impact of changes in TEG/ORC bottom cycle ratio on system performance under specific superheat conditions. Experimental results indicate that in the TEG-ORC combined cycle, increasing the working fluid’s superheat can enhance system output power. In the working fluid’s superheated state, increasing the bottoming cycle ratio boosts the combined cycle system's output power,lowers generation costs,and elevates working fluid flow rate,collectively enhancing the performance of the combined cycle system.

关键词

船舶余热 / 梯级回收 / 过热蒸汽状态 / TEG-ORC联合循环 / 底循环比

Key words

vessels waste heat / cascade recovery / superheated steam states / TEG-ORC combined cycle / bottom cycle ratios

引用本文

导出引用
孙德平, 李怡然, 乔广超, 石飞雄, 封星, 柳长昕. 面向船舶余热回收的TEG-ORC联合循环变底循环比及过热工况输出性能研究[J]. 太阳能学报. 2025, 46(3): 73-82 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1967
Sun Deping, Li Yiran, Qiao Guangchao, Shi Feixiong, Feng Xing, Liu Changxin. RESEARCH ON DIFFERENT BOTTOM CYCLE RATIOS AND SUPERHEAT CONDITION OUTPUT PERFORMANCE OF TEG-ORC COMBINED CYCLE FOR SHIP WASTE HEAT RECOVERY[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 73-82 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1967
中图分类号: TK123   

参考文献

[1] CARIOU P, RANDRIANARISOA L M.Stakeholders’ participation at the IMO marine environmental protection committee[J]. Marine policy, 2023, 149: 105506.
[2] 石珣, 董丽娜. 现有船能效EEXI、CII、SEEMP最新技术要求解析[J]. 中国船检, 2022(7): 46-50.
SHI X, DONG L N.Analysis of the latest technical requirements of existing ship energy efficiency EEXI, CII and SEEMP[J]. China shipping inspection, 2022(7): 46-50.
[3] 李政, 张东杰, 潘玲颖, 等. “双碳” 目标下我国能源低碳转型路径及建议[J]. 动力工程学报, 2021, 41(11): 905-909, 971.
LI Z, ZHANG D J, PAN L Y, et al.Low-carbon transition of China’s energy sector and suggestions with the ‘carbon-peak and carbon-neutrality’ target[J]. Journal of Chinese Society of Power Engineering, 2021, 41(11): 905-909, 971.
[4] NOUR EDDINE A, SARA H, CHALET D, et al.Modeling and simulation of a thermoelectric generator using bismuth telluride for waste heat recovery in automotive diesel engines[J]. Journal of electronic materials, 2019, 48(4): 2036-2045.
[5] DAI Y, CHEN F, LI H, et al.A comprehensive utilization system of air compressor waste heat[J]. Energy saving, 2015, 34(10): 61-64.
[6] GEORGOPOULOU C A, DIMOPOULOS G G, KAKALIS N M P. A modular dynamic mathematical model of thermoelectric elements for marine applications[J]. Energy, 2016, 94: 13-28.
[7] LIU C X, ZHAO K Y, FAN Y H, et al.A flexible thermoelectric film based on Bi2Te3 for wearable applications[J]. Functional materials letters, 2022, 15(1): 2251005.
[8] ZHAO K, LIU C, SHAO T, et al.Enhanced thermoelectric performance of Bi2Te3 by carbon nanotubes and silicate aerogel co-doping toward ocean energy harvesting[J]. Materials today sustainability, 2023, 23: 100476.
[9] LIU J H, LIU C X, ZHAO C, et al.Design of self-powered environment monitoring sensor based on TEG and TENG[C]//2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems(NEMS). Xiamen, China, 2021: 749-753.
[10] LIU C X, ZHAO C, LIU J H, et al.Design and study of a combining energy harvesting system based on thermoelectric and flapping triboelectric nanogenerator[J]. International journal of green energy, 2021, 18(12): 1302-1308.
[11] LION S, TACCANI R, VLASKOS I, et al.Thermodynamic analysis of waste heat recovery using organic rankine cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier Ⅱ and Tier Ⅲ operation[J]. Energy, 2019, 183: 48-60.
[12] 刘雪玲, 牛锦涛, 汪健生, 等. 利用地热能的双压有机朗肯循环性能分析[J]. 太阳能学报, 2022, 43(9): 437-443.
LIU X L, NIU J T, WANG J S, et al.Thermodynamic performance analysis of double pressure organic Rankine cycle driven by geotherm[J]. Acta energiae solaris sinica, 2022, 43(9): 437-443.
[13] 张洁雄, 张杰, 穆永超, 等. 太阳能有机朗肯循环发电系统模拟优化研究[J]. 太阳能学报, 2023, 44(9): 236-240.
ZHANG J X, ZHANG J, MU Y C, et al.Study on simulation and optimization of solar organic Rankine cycle power generation system[J]. Acta energiae solaris sinica, 2023, 44(9): 236-240.
[14] MILLER E W, HENDRICKS T J, PETERSON R B.Modeling energy recovery using thermoelectric conversion integrated with an organic Rankine bottoming cycle[J]. Journal of electronic materials, 2009, 38(7): 1206-1213.
[15] KUMAR S, ROY D, GHOSH S.Thermodynamic assessment of TEG-ORC combined cycle powered by solar energy[J]. International journal of renewable energy technology, 2017, 8(3-4): 346-359.
[16] GHAEBI H, ROSTAMZADEH H.Performance comparison of two new cogeneration systems for freshwater and power production based on organic Rankine and Kalina cycles driven by salinity-gradient solar pond[J]. Renewable energy, 2020, 156: 748-767.
[17] 杨添林, 莫政宇. 基于温差发电-有机朗肯循环联合循环的铝电解槽余热综合利用系统[J]. 内燃机与配件, 2023(4): 6-9.
YANG T L, MO Z Y.Thermoelectric-organic Rankine cycle combined system for comprehensive utilization of aluminum electrolysis waste heat[J]. Internal combustion engine & parts, 2023(4): 6-9.
[18] ZHAO J, SHU G Q, LIANG X Y, et al.Research on the simulation of cascade utilization of engines’waste heat based on TEG and ORC[C]//2011 Second International Conference on Mechanic Automation and Control Engineering. Hohhot, China, 2011: 5199-5205.
[19] LOU Y C, LIU G K, ROMAGNOLI A, et al.TEG-ORC combined cycle for geothermal source with coaxial casing well[J]. Applied thermal engineering, 2023, 226: 120223.
[20] LAN S, LI Q S, GUO X, et al.Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle[J]. Energy, 2023, 263: 125717.
[21] 王慧斌, 汪正洋, 吕延枫, 等. 船舶主机废气余热温差发电的数值模拟与试验研究[J]. 船舶工程, 2018, 40(2): 8-11.
WANG H B, WANG Z Y, LYU Y F, et al.Numerical simulation and experimental study on exhaust heat of ship diesel engine based on TEG[J]. Ship engineering, 2018, 40(2): 8-11.
[22] YANG M H, YEH R H.Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine[J]. Applied energy, 2015, 149: 1-12.
[23] LIU C X, LI H A, YE W X, et al.Simulation research of TEG-ORC combined cycle for cascade recovery of vessel waste heat[J]. International journal of green energy, 2021, 18(11): 1173-1184.
[24] LIU C X, LIU J H, YE W X, et al.Study on a new cascade utilize method for ship waste heat based on TEG-ORC combined cycle[J]. Environmental progress & sustainable energy, 2021, 40(5): e13661.
[25] YE W X, LIU C X, LIU J H, et al.Research on TEG-ORC combined bottom cycle for cascade recovery from various vessel waste heat sources[J]. Arabian journal for science and engineering, 2022, 47(3): 3151-3161.
[26] TURTON R, BAILIE R C, Whiting W B, et al.Analysis, synthesis and design of chemical processes[M]. New York: Pearson Education, 2008.

基金

国家自然科学基金面上项目(52271357)

PDF(2272 KB)

Accesses

Citation

Detail

段落导航
相关文章

/