改进的风功率异常数据贝叶斯变点-Thompson tau清洗方法

王智明, 陈小国, 王领军, 鲁文彬

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 687-696.

PDF(8894 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(8894 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 687-696. DOI: 10.19912/j.0254-0096.tynxb.2023-1973

改进的风功率异常数据贝叶斯变点-Thompson tau清洗方法

  • 王智明, 陈小国, 王领军, 鲁文彬
作者信息 +

IMPROVED BAYESIAN CHANGE POINT-THOMPSON TAU CLEANING METHOD FOR WIND POWER ANOMALIES

  • Wang Zhiming, Chen Xiaoguo, Wang Lingjun, Lu Wenbin
Author information +
文章历史 +

摘要

根据风功率异常数据分布特点及其产生原因提出一种改进贝叶斯变点-Thompson tau异常数据清洗方法。首先,对小于切入风速的非零功率值进行剔除;接着基于改进贝叶斯变点-Thompson tau法剔除功率曲线底部堆积和周围离散型异常值,得到清洗后的正常数据;最后,应用该文所提方法,对某风场6台机组的实际功率风速数据进行清洗,用清洗时间、数据删除率、均方根误差及决定系数等评价指标对所提方法进行验证。分析结果显示:与四分位-k-均值聚类算法、最优组内方差算法、贝叶斯变点-四分位法及Thompson tau-四分位法比较,该文方法能有效识别和剔除各类功率风速异常值,所建功率曲线精度高,且清洗时间短,清洗效果好,通用性较强。

Abstract

According to the distribution characteristics and causes of abnormal wind power data, an improved Bayesian change point-Thompson tau abnormal data cleaning method is proposed. First, the non-zero power value less than the cut-in wind speed is eliminated. Then, abnormal values accumulated at the bottom of the power curve and the surrounding discrete outliers are removed based on the improved Bayesian change point-Thompson tau method, and the cleaned normal data are obtained. Finally, the proposed method is applied to clean the actual power wind speed data of six units in a wind field, and the evaluation indexes such as cleaning time, data deletion rate, root mean square error and determination coefficient are used to verify the proposed method. The results show that compared with quartile k-means clustering algorithm, optimal intra-group variance algorithm, Bayesian change point-quartile method and Thompson tau-quartile method, the proposed method can effectively identify and eliminate all kinds of power and wind speed outliers, and the constructed power curve has high accuracy. The cleaning time is short, cleaning effect is good and versatility is strong.

关键词

风电功率 / 风电机组 / 数据处理 / 功率曲线建模 / 改进贝叶斯变点-Thompson tau

Key words

wind power / wind turbines / data processing / power curve modeling / improved Bayesian change point-Thompson tau

引用本文

导出引用
王智明, 陈小国, 王领军, 鲁文彬. 改进的风功率异常数据贝叶斯变点-Thompson tau清洗方法[J]. 太阳能学报. 2025, 46(3): 687-696 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1973
Wang Zhiming, Chen Xiaoguo, Wang Lingjun, Lu Wenbin. IMPROVED BAYESIAN CHANGE POINT-THOMPSON TAU CLEANING METHOD FOR WIND POWER ANOMALIES[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 687-696 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1973
中图分类号: TK83    TM619   

参考文献

[1] 任大伟, 肖晋宇, 侯金鸣, 等. 双碳目标下我国新型电力系统的构建与演变研究[J]. 电网技术, 2022, 46(10): 3831-3839.
REN D W, XIAO J Y, HOU J M, et al.Construction and evolution of China’s new power system under dual carbon goal[J]. Power system technology, 2022, 46(10): 3831-3839.
[2] 董海鹰, 陈彦求, 汪宁渤, 等. 含前端调速式风电机组风电场的无功运行优化[J]. 太阳能学报, 2020, 41(11): 254-260.
DONG H Y, CHEN Y Q, WANG N B, et al.Optimizatton in reactive power operation of wind farm with front-end speed controlled wind turbine[J]. Acta energiae solaris sinica, 2020, 41(11): 254-260.
[3] WU J H, SHAO Z G, YANG S H.A combined algorithm for data cleaning of wind power scatter diagram considering actual engineering characteristics[J]. Journal of physics: conference series, 2020, 1639(1): 012044.
[4] 刘明宇, 姚芳, 李志刚, 等. 风电机组功率模型参数辨识及风资源利用率评估[J]. 太阳能学报, 2020, 41(12): 305-315.
LIU M Y, YAO F, LI Z G, et al.Power model parameter identification and wind resource utilization evaluation of wind turbine[J]. Acta energiae solaris sinica, 2020, 41(12): 305-315.
[5] 林鹏, 赵书强, 谢宇琪, 等. 基于实测数据的风电功率曲线建模及不确定估计[J]. 电力自动化设备, 2015, 35(4): 90-95.
LIN P, ZHAO S Q, XIE Y Q, et al.Wind power curve modeling based on measured data and uncertainty estimation[J]. Electric power automation equipment, 2015, 35(4): 90-95.
[6] KUSIAK A, ZHENG H Y, SONG Z.Models for monitoring wind farm power[J]. Renewable energy, 2009, 34(3): 583-590.
[7] 尚海勇, 刘利强, 齐咏生, 等. 基于数字孪生技术的风电机组建模研究[J]. 太阳能学报, 2023, 44(5): 391-400.
SHANG H Y, LIU L Q, QI Y S, et al.Research on wind turbine modeling based on digital twin technology[J]. Acta energiae solaris sinica, 2023, 44(5): 391-400.
[8] 杨茂, 杨琼琼. 风电机组风速-功率特性曲线建模研究综述[J]. 电力自动化设备, 2018, 38(2): 34-43.
YANG M, YANG Q Q.Review of modeling of wind speed-power characteristic curve for wind turbine[J]. Electric power automation equipment, 2018, 38(2): 34-43.
[9] YIN X Q, LIU Y, YANG L, et al.Abnormal data cleaning method for wind turbines based on constrained curve fitting[J]. Energies, 2022, 15(17): 6373.
[10] 李阳, 沈小军, 张扬帆, 等. 基于速度-关联约束的风电机组风速感知异常数据识别方法[J]. 电工技术学报, 2023, 38(7): 1793-1807.
LI Y, SHEN X J, ZHANG Y F, et al.Cleaning method of wind speed outliers for wind turbines based on velocity and correlation constraints[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1793-1807.
[11] ZHAO Y N, YE L, WANG W S, et al.Data-driven correction approach to refine power curve of wind farm under wind curtailment[J]. IEEE transactions on sustainable energy, 2018, 9(1): 95-105.
[12] 赵永宁, 叶林, 朱倩雯. 风电场弃风异常数据簇的特征及处理方法[J]. 电力系统自动化, 2014, 38(21): 39-46.
ZHAO Y N, YE L, ZHU Q W.Characteristics and processing method of abnormal data clusters caused by wind curtailments in wind farms[J]. Automation of electric power systems, 2014, 38(21): 39-46.
[13] 陈伟, 吴布托, 裴喜平. 风电机组异常数据预处理的分类多模型算法[J]. 电力系统及其自动化学报, 2018, 30(4): 137-143.
CHEN W, WU B T, PEI X P.Classification multi-model algorithm for abnormal data preprocessing in wind turbines[J]. Proceedings of the CSU-EPSA, 2018, 30(4): 137-143.
[14] 胡阳, 乔依林. 基于置信等效边界模型的风功率数据清洗方法[J]. 电力系统自动化, 2018, 42(15): 18-23, 149.
HU Y, QIAO Y L.Wind power data cleaning method based on confidence equivalent boundary model[J]. Automation of electric power systems, 2018, 42(15): 18-23, 149.
[15] SUN Q L, LIU C L, ZHEN C G.Abnormal detection of wind turbine operating conditions based on state curves[J]. Journal of energy engineering, 2019, 145(5): 06019001.
[16] 娄建楼, 胥佳, 陆恒, 等. 基于功率曲线的风电机组数据清洗算法[J]. 电力系统自动化, 2016, 40(10): 116-121.
LOU J L, XU J, LU H, et al.Wind turbine data-cleaning algorithm based on power curve[J]. Automation of electric power systems, 2016, 40(10): 116-121.
[17] SHEN X J, FU X J, ZHOU C C.A combined algorithm for cleaning abnormal data of wind turbine power curve based on change point grouping algorithm and quartile algorithm[J]. IEEE transactions on sustainable energy, 2019, 10(1): 46-54.
[18] LONG H, SANG L W, WU Z J, et al.Image-based abnormal data detection and cleaning algorithm via wind power curve[J]. IEEE transactions on sustainable energy, 2020, 11(2): 938-946.
[19] 王新, 王政霞. 基于改进bin算法的风电机组风速-功率数据清洗[J]. 智能科学与技术学报, 2020, 2(1): 62-71.
WANG X, WANG Z X.Wind speed-power data cleaning of wind turbine based on improved Bin algorithm[J]. Chinese journal of intelligent science and technology, 2020, 2(1): 62-71.
[20] YE X, LU Z X, QIAO Y, et al.Identification and correction of outliers in wind farm time series power data[J]. IEEE transactions on power systems, 2016, 31(6): 4197-4205.
[21] 吴永斌, 张建忠, 袁正舾, 等. 风电场风功率异常数据识别与清洗研究综述[J]. 电网技术, 2023, 47(6): 2367-2380.
WU Y B, ZHANG J Z, YUAN Z X, et al.Review on identification and cleaning of abnormal wind power data for wind farms[J]. Power system technology, 2023, 47(6): 2367-2380.
[22] 齐培艳, 田铮, 段西发, 等. 异方差非参数回归模型均值与方差变点的小波估计与应用[J]. 系统工程理论与实践, 2013, 33(4): 988-995.
QI P Y, TIAN Z, DUAN X F, et al.Wavelet estimators for change-points in mean and variance of nonparametric regression model and applications[J]. Systems engineering-theory & practice, 2013, 33(4): 988-995.
[23] 周影辉, 倪中新, 杨爱军. 0-1序列中变点的贝叶斯分析[J]. 数理统计与管理, 2014, 33(6): 1001-1009.
ZHOU Y H, NI Z X, YANG A J.Bayesian analysis of change-points in 0-1 sequences[J]. Journal of applied statistics and management, 2014, 33(6): 1001-1009.
[24] WANG Z M, LIU W M, WANG X.Abnormal data cleaning of wind turbine power curve using Bayesian change point-quartile combined algorithm[J]. Proceedings of the institution of mechanical engineers, part A: journal of power and energy, 2023, 237(3): 495-503.
[25] YAO Q T, ZHU H W, XIANG L, et al.A novel composed method of cleaning anomy data for improving state prediction of wind turbine[J]. Renewable energy, 2023, 204: 131-140.
[26] 邹同华, 高云鹏, 伊慧娟, 等. 基于Thompson tau-四分位和多点插值的风电功率异常数据处理[J]. 电力系统自动化, 2020, 44(15): 156-162.
ZOU T H, GAO Y P, YI H J, et al.Processing of wind power abnormal data based on Thompson tau-quartile and multi-point interpolation[J]. Automation of electric power systems, 2020, 44(15): 156-162.
[27] LYDIA M, SELVAKUMAR A I, KUMAR S S, et al.Advanced algorithms for wind turbine power curve modeling[J]. IEEE transactions on sustainable energy, 2013, 4(3): 827-835.

基金

国家自然科学基金(52365063)

PDF(8894 KB)

Accesses

Citation

Detail

段落导航
相关文章

/